Early transcriptional response of seedling roots to Ralstonia solanacearum in tobacco (Nicotiana tabacum L.)

  • Wenxia Gao
  • Renjie Chen
  • Mingming Pan
  • Weiqi Tang
  • Tao Lan
  • Likun Huang
  • Wenchao Chi
  • Weiren WuEmail author


Bacterial wilt (BW) caused by Ralstonia solanacearum (Ras) is a very destructive disease in solanaceous crops. The molecular mechanism underlying BW resistance in solanaceous plants is still unclear. Using RNA sequencing, we investigated the transcriptional response in the seedling roots of a BW-resistant cultivar D101 and a BW-susceptible cultivar Changbohuang (CBH) of tobacco at 3 h after inoculation with Ras. In total, 158 and 835 differentially expressed genes (DEGs) were detected in D101 and CBH, respectively. Only 41 DEGs were in common between the two cultivars. The number of DEGs in D101 was much smaller than that in CBH, suggesting that D101 was less affected by the inoculation than CBH because of its higher resistance, which could be expressed at the early stages of Ras infection. Transcriptome analysis revealed that in D101 two sets of upregulated genes were significantly enriched in two corresponding groups of gene ontology terms regarding glutathione and flavonoids metabolisms, respectively, suggesting that glutathione and flavonoids are probably two types of main substances conferring the early resistance against Ras infection in tobacco root. Our findings provide a valuable clue to deeply investigate the molecular mechanism of BW resistance in tobacco and solanaceous plants.


Bacterial wilt Ralstonia solanacearum Tobacco Transcriptional profiling RNA sequencing 


Compliance with ethical standards

The paper has not been submitted elsewhere for publication, in whole or in part.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Human and animal studies

The research did not involve any human participants and/or animals.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Supplementary material

10658_2019_1788_MOESM1_ESM.docx (14 kb)
Table S1 (DOCX 14 kb)
10658_2019_1788_MOESM2_ESM.xlsx (90 kb)
Table S2 (XLSX 89 kb)
10658_2019_1788_MOESM3_ESM.docx (14 kb)
Table S3 (DOCX 14 kb)
10658_2019_1788_MOESM4_ESM.docx (14 kb)
Table S4 (DOCX 14 kb)
10658_2019_1788_MOESM5_ESM.xlsx (49 kb)
Table S5 (XLSX 49 kb)


  1. Alexa, A., & Rahnenfuhrer, J. (2017). topGO: Enrichment Analysis for Gene Ontology. Version 2.28.0. Accessed 15 Aug 2017.
  2. Alvarez, B., Biosca, E. G., & López, M. M. (2010). On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. In A. Mendez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (pp. 267–279). Badajoz: Formatex Research Center.Google Scholar
  3. Bakshi, M., & Oelmüller, R. (2014). WRKY transcription factors: Jack of many trades in plants. Plant Signaling & Behavior, 9(2), e27700.CrossRefGoogle Scholar
  4. Cai, H., Yang, S., Yan, Y., Xiao, Z., Cheng, J., Wu, J., Qiu, A., Lai, Y., Mou, S., Guan, D., Huang, R., & He, S. (2015). CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers hightemperature and high-humidity tolerance in pepper. Journal of Experimental Botany, 66(11), 3163–3174.CrossRefGoogle Scholar
  5. Caldwell, D., Kim, B.-S., & Iyer-Pascuzzi, A. S. (2017). Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology, 107(5), 528–536.CrossRefGoogle Scholar
  6. Chen, N., Yu, B., Dong, R., Lei, J., Chen, C., & Cao, B. (2018). RNA-Seq-derived identification of differential expression in the eggplant (Solanum melongena) following inoculation with bacterial wilt. Gene, 644, 137–147.CrossRefGoogle Scholar
  7. Cobbett, C. S., May, M. J., Howden, R., & Rolls, B. (1998). The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant Journal, 16(1), 73–78.CrossRefGoogle Scholar
  8. Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674–3676.CrossRefGoogle Scholar
  9. Danesh, D., Aarons, S., McGill, G. E., & Young, N. D. (1994). Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Molecular Plant-Microbe Interactions, 7(4), 464–471.CrossRefGoogle Scholar
  10. Dang, F.-F., Wang, Y.-N., Yu, L., Eulgem, T., Lai, Y., Liu, Z.-Q., Wang, X., Qiu, A.-L., Zhang, T.-X., Lin, J., Chen, Y.-S., Guan, D.-Y., Cai, H.-Y., Mou, S.-L., & He, S.-L. (2013). CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell and Environment, 36(4), 757–774.CrossRefGoogle Scholar
  11. Dean, J. D., Goodwin, P. H., & Hsiang, T. (2005). Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. Journal of Experimental Botany, 56(416), 1525–1533.CrossRefGoogle Scholar
  12. Dubreuil-Maurizi, C., & Poinssot, B. (2012). Role of glutathione in plant signaling under biotic stress. Plant Signaling & Behavior, 7(2), 210–212.CrossRefGoogle Scholar
  13. Ferreyra, M. L. F., Rius, S. P., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3, a222.Google Scholar
  14. Fofana, B., Benhamou, N., McNally, D. J., Labbé, C., Séguin, A., & Bélanger, R. R. (2005). Suppression of induced resistance in cucumber through disruption of the flavonoid pathway. Phytopathology, 95(1), 114–123.CrossRefGoogle Scholar
  15. French, E., Kim, B.-S., Rivera-Zuluaga, K., & Iyer-Pascuzzi, A. S. (2018). Whole root transcriptomic analysis suggests a role for auxin pathways in resistance to Ralstonia solanacearum in tomato. Molecular Plant-Microbe Interactions, 31(4), 432–444.CrossRefGoogle Scholar
  16. Grimault, V., & Prior, P. (1993). Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum. Plant Pathology, 42(4), 589–594.CrossRefGoogle Scholar
  17. Gullner, G., & Kômíves, T. (2006). Defense reactions of infected plants: roles of glutathione and glutathione S-transferase enzymes. Acta Phytopathologica et Entomologica Hungarica, 41(1–2), 3–10.CrossRefGoogle Scholar
  18. Higashi, K., Ishiga, Y., Inagaki, Y., Toyoda, K., Shiraishi, T., & Ichinose, Y. (2008). Modulation of defense signal transduction by Xagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Molecular Genetics and Genomics, 279(3), 303–312.CrossRefGoogle Scholar
  19. Hu, Y., Dong, Q., & Yu, D. (2012). Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Science, 185-186, 288–297.CrossRefGoogle Scholar
  20. Huet, G. (2014). Breeding for resistances to Ralstonia solanacearum. Frontiers in Plant Science, 5(715), 1–5.Google Scholar
  21. Hwang, J., Choi, Y., Kang, J., Kim, S., Cho, M., Mihalte, L., & Park, Y. (2011). Microarray analysis of the transcriptome for bacterial wilt resistance in pepper (Capsicum annuum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 49–57.CrossRefGoogle Scholar
  22. Ishihara, T., Mitsuhara, I., Takahashi, H., & Nakaho, K. (2012). Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS ONE, 7(10), e46763.CrossRefGoogle Scholar
  23. Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(16), 323–329.CrossRefGoogle Scholar
  24. Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357–360.CrossRefGoogle Scholar
  25. Knoth, C., Ringler, J., Dangl, J. L., & Eulgem, T. (2007). Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions, 20(2), 120–128.CrossRefGoogle Scholar
  26. Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. Scientific World Journal, 2013, a162750.Google Scholar
  27. Lan, T., Zheng, S., Yang, L., Wang, B., Zhang, S., Tong, Z., Chen, Y., Chen, S., Duan, Y., & Wu, W. (2014). Mapping of quantitative trait loci conferring resistance to bacterial wilt in tobacco (Nicotiana tabacum L.). Plant Breeding, 133(5), 672–677.CrossRefGoogle Scholar
  28. Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Trémousaygue, D., Kraut, A., Zhou, B., Levaillant, M., Adachi, H., Yoshioka, H., Raffaele, S., Berthomé, R., Couté, Y., Parker, J. E., & Deslandes, L. (2015). A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell, 161(5), 1074–1088.CrossRefGoogle Scholar
  29. Margin, B., Thouqet, P., Olivier, J., & Grimsley, N. H. (1999). Temporal and multiple quantitative trait loci analysis of resistance to bacterial wilt in tomato permit resolution of linked loci. Genetics, 151(3), 1165–1172.Google Scholar
  30. Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240–16265.CrossRefGoogle Scholar
  31. Mimura, Y., Kageyama, T., Minamiyama, Y., & Hirai, M. (2009). QTL analysis for resistance to Ralstonia solanacearum in Capsicum accession ‘LS2341’. Journal of the Japanese Society for Horticultural Science, 78(3), 307–313.CrossRefGoogle Scholar
  32. Mukhtar, M. S., Deslandes, L., Auriac, M.-C., Marco, Y., & Somssich, I. E. (2008). The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant Journal, 56(6), 935–947.CrossRefGoogle Scholar
  33. Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., & Mauch, F. (2007). Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant Journal, 49(1), 159–172.CrossRefGoogle Scholar
  34. Poueymiro, M., & Genin, S. (2009). Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Current Opinion in Microbiology, 12(1), 44–52.CrossRefGoogle Scholar
  35. Qian, Y., Wang, X., Wang, D., Zhang, L., Zu, C., Gao, Z., & Zhang, H. (2013). The detection of QTLs controlling bacterial wilt resistance in tobacco (N. tabacum L.). Euphytica, 192(2), 259–266.CrossRefGoogle Scholar
  36. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140.CrossRefGoogle Scholar
  37. Schön, M., Töller, A., Diezel, C., Roth, C., Westphal, L., Wiermer, M., & Somssich, I. C. (2013). Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Molecular Plant-Microbe Interactions, 26(7), 758–767.CrossRefGoogle Scholar
  38. Thomma, B. P., Nurnberger, T., & Joosten, M. H. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell, 23(1), 4–15.CrossRefGoogle Scholar
  39. Thoquet, P., Olivier, J., Sperisen, C., Rogowsky, P., Laterrot, H., & Grimsley, N. (1996a). Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Molecular Plant-Microbe Interactions, 9(9), 826–836.CrossRefGoogle Scholar
  40. Thoquet, P., Olivier, J., Sperisen, C., Rogowsky, P., Prior, P., Anaïs, G., Mangin, B., Bazin, B., Nazer, R., & Grimsley, N. (1996b). Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Molecular Plant-Microbe Interactions, 9(9), 837–842.CrossRefGoogle Scholar
  41. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511–515.CrossRefGoogle Scholar
  42. Vasse, J., Danoun, S., & Trigalet, A. (2005). Microscopic studies of root infection in resistant tomato cultivar Hawaii 7996. In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum species complex (p. 285). St. Paul: APS Press.Google Scholar
  43. Wang, Y., Dang, F., Liu, Z., Wang, X., Eulgem, T., Lai, Y., Yu, L., She, J., Shi, Y., Lin, J., Chen, C., Guan, D., Qiu, A., & He, S. (2013). CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Molecular Plant Pathology, 14(2), 131–144.CrossRefGoogle Scholar
  44. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., Arakawa, M. (1992). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology and Immunology, 36(12), 1251–1275.Google Scholar
  45. Zuluaga, A. P., Solé, M., Lu, H., Góngora-Castillo, E., Vaillancourt, B., Coll, N., Robin Buell, C., & Valls, M. (2015). Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii. BMC Genomics, 16, 246.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Fujian Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations