Advertisement

Identification of two further agriculturally important begomoviruses and their associated satellites infecting the weed Digera arvensis in Pakistan

  • Afzal Akram
  • Khalid Pervaiz Akhtar
  • Najeeb Ullah
  • Muhammad Qasim Aslam
  • Peter Moffett
  • Shahid Mansoor
  • Rob W. Briddon
  • Muhammad SaeedEmail author
Short Communication
  • 42 Downloads

Abstract

As well as competing with crop plants for nutrients, weeds may act as alternative hosts/reservoirs for agriculturally important viruses. The perennial weed Digera arvensis is common in and around fields of crops in Asia and has previously been shown to host begomoviruses and associated betasatellites and alphasatellites. During 2017, D. arvensis plants growing adjacent to a field of cotton in Faisalabad, Pakistan, were identified with foliar yellow mosaic and curling symptoms reminiscent of begomovirus infection. The sequences of four clones of begomoviruses were obtained from two symptomatic D. arvensis plants. Analysis of the sequences showed each plant to be infected with a different begomovirus; Tomato leaf curl Kerala virus (ToLCKeV) and Pedilanthus leaf curl virus (PeLCV). Additionally, the plant infected with ToLCKeV was shown to harbour Ageratum enation alphasatellite (AEA), Ageratum yellow vein India alphasatellite (AYVIA) and Rose leaf curl betasatellite (RoLCuB). Although the plant infected with PeLCV was shown also to harbour AEA, a betasatellite which was identified by PCR, was not characterised. These findings extend the range of begomoviruses/satellites known to infect D. arvensis and highlight this weed species as an important reservoir of agriculturally important begomoviruses/satellites.

Keywords

Geminiviridae Begomovirus Alphasatellite Betasatellite Alternate host Weed Digera arvensis 

Notes

Acknowledgements

The authors are grateful to Dr. Imran Amin and Dr. Brian Scheffler for assistance with sequencing. This material is based upon work supported by the ‘Pak-US Cotton Productivity Enhancement Program’ of the International Center for Agricultural Research in the Dry Areas (ICARDA) funded by United States Department of Agriculture (USDA), Agricultural Research Service (ARS), under Agreement No. 58-6402-0-178F. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the USDA or ICARDA. Additional funding was obtained under National Research Program for Universities, Higher Education Commission [NRPU-HEC], Pakistan under grant no 6095 to MS at the National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan. RWB was supported by the HEC, Government of Pakistan, under the ‘Foreign Faculty Hiring Program’.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

The research did not involve any studies with human participants or animals performed by any of the authors.

Supplementary material

10658_2019_1783_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)

References

  1. Abbas, Q., Amin, I., Mansoor, S., Shafiq, M., Wassenegger, M. & Briddon, R. W. (2019). The Rep proteins encoded by alphasatellites restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana. Virus Disease, 30, 101–105.Google Scholar
  2. Adams, M. J., Lefkowitz, E. J., King, A. M. Q., Harrach, B., Harrison, R. L., Knowles, N. J., Kropinski, A. M., Krupovic, M., Kuhn, J. H., Mushegian, A. R., Nibert, M., Sabanadzovic, S., Sanfaçon, H., Siddell, S. G., Simmonds, P., Varsani, A., Zerbini, F. M., Gorbalenya, A. E., & Davison, A. J. (2017). Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2017). Archives of Virology, 162, 2505–2538.CrossRefGoogle Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.CrossRefGoogle Scholar
  4. Briddon, R. W., Bull, S. E., Mansoor, S., Amin, I., & Markham, P. G. (2002). Universal primers for the PCR-mediated amplification of DNA β: A molecule associated with some monopartite begomoviruses. Molecular Biotechnology, 20, 315–318.CrossRefGoogle Scholar
  5. Briddon, R. W., Martin, D. P., Roumagnac, P., Navas-Castillo, J., Fiallo-Olivé, E., Moriones, E., & Varsani, A. (2018). Alphasatellitidae: A new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Archives of Virology, 163, 2587–2600.CrossRefGoogle Scholar
  6. Brown, J. K., Zerbini, F. M., Navas-Castillo, J., Moriones, E., RamosSobrinho, R., Silva, J. C. F., Fiallo-Olivé, E., Briddon, R. W., Hernández-Zepeda, C., Idris, A., Malathi, V. G., Martin, D. P., Rivera-Bustamante, R., Ueda, S., & Varsani, A. (2015). Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology, 160, 1593–1619.CrossRefGoogle Scholar
  7. Bull, S. E., Briddon, R. W., & Markham, P. G. (2003). Universal primers for the PCR-mediated amplification of DNA 1: A satellite-like molecule associated with begomovirus-DNA β complexes. Molecular Biotechnology, 23, 83–86.CrossRefGoogle Scholar
  8. Datta, S., Budhauliya, R., Das, B., Gopalakrishnan, R., Sharma, S., Chatterjee, S., Vanlalhmuaka, Raju, P. S., & Veer, V. (2017). Rebound of Cotton leaf curl Multan virus and its exclusive detection in cotton leaf curl disease outbreak, Punjab (India), 2015. Scientific Reports, 7, 17361.CrossRefGoogle Scholar
  9. Doyle, J. (1991). DNA protocols for plants. In G. M. Hewitt, A. W. B. Johnston, & J. P. W. Young (Eds.), Molecular Techniques in Taxonomy (pp. 283–293). Berlin, Heidelberg: Springer Berlin Heidelberg.  https://doi.org/10.1007/978-3-642-83962-7_18.CrossRefGoogle Scholar
  10. Idris, A. M., Shahid, M. S., Briddon, R. W., Khan, A. J., Zhu, J.-K., & Brown, J. K. (2011). An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. Journal of General Virology, 92, 706–717.CrossRefGoogle Scholar
  11. Ismail, H., Hassan, I., Zubair, M., Khan, Z., Sarfaraz, S., Jamil, N., Mansoor, S., Asad, S., & Amin, I. (2017). First report of Pedilanthus leaf curl virus, tobacco leaf curl betasatellite and guar leaf curl alphasatellite infecting radish (Raphanus sativus) in Pakistan. Plant Disease, 101, 845.CrossRefGoogle Scholar
  12. Khatri, S., Nahid, N., Fauquet, C. M., Mubin, M., & Nawaz-ul-Rehman, M. S. (2014). A betasatellite-dependent begomovirus infects ornamental rose: Characterization of begomovirus infecting rose in Pakistan. Virus Genes, 49, 124–131.CrossRefGoogle Scholar
  13. Kumar, J., Alok, A., Kumar, J., & Tuli, R. (2016). Senna leaf curl virus: a novel begomovirus identified in Senna occidentalis. Archives of Virology, 161, 2609–2612.CrossRefGoogle Scholar
  14. Mar, T. B., Mendes, I. R., Lau, D., Fiallo-Olive, E., Navas-Castillo, J., Alves, M. S., & Murilo Zerbini, F. (2017). Interaction between the New World begomovirus Euphorbia yellow mosaic virus and its associated alphasatellite: Effects on infection and transmission by the whitefly Bemisia tabaci. Journal of General Virology, 98, 1552–1562.CrossRefGoogle Scholar
  15. Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1, vev003.CrossRefGoogle Scholar
  16. Mubin, M., Briddon, R. W., & Mansoor, S. (2009). Diverse and recombinant DNA betasatellites are associated with a begomovirus disease complex of Digera arvensis, a weed host. Virus Research, 142, 208–212.CrossRefGoogle Scholar
  17. Muhire, B. M., Varsani, A., & Martin, D. P. (2014). SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One, 9, e108277.CrossRefGoogle Scholar
  18. Munir, S., Khurshid, M., Kanwal, H., Hussain, M., Sattar, M. N., Ali, I., Rehman, A. U., & Iqbal, Z. (2018). Identification of pedilanthus leaf curl virus and associated betasatellite infecting turnip in Pakistan. Journal of Plant Pathology, 100, 317–321.CrossRefGoogle Scholar
  19. Nawaz-ul-Rehman, M. S., Nahid, N., Mansoor, S., Briddon, R. W., & Fauquet, C. M. (2010). Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. Virology, 405, 300–308.CrossRefGoogle Scholar
  20. Paprotka, T., Metzler, V., & Jeske, H. (2010). The first DNA 1-like α satellites in association with New World begomoviruses in natural infections. Virology, 404, 148–157.CrossRefGoogle Scholar
  21. Prajapat, R., Marwal, A., & Gaur, R. K. (2013). Begomovirus associated with alternative host weeds: A critical appraisal. Archives of Phytopathology and Plant Protection, 47, 157–170.CrossRefGoogle Scholar
  22. Rathore, S., Bhatt, B. S., Yadav, B. K., Kale, R. K., & Singh, A. K. (2013). A new begomovirus species in sssociation with betasatellite causing tomato leaf curl disease in Gandhinagar, India. Plant Disease, 98, 428–428.CrossRefGoogle Scholar
  23. Rojas, M. R., Macedo, M. A., Maliano, M. R., Soto-Aguilar, M., Souza, J. O., Briddon, R. W., Kenyon, L., Rivera Bustamante, R. F., Zerbini, F. M., Adkins, S., Legg, J. P., Kvarnheden, A., Wintermantel, W. M., Sudarshana, M. R., Peterschmitt, M., Lapidot, M., Martin, D. P., Moriones, E., Inoue-Nagata, A. K., & Gilbertson, R. L. (2018). World management of geminiviruses. Annual Review of Phytopathology, 56, 637–677.CrossRefGoogle Scholar
  24. Rosen, R., Kanakala, S., Kliot, A., Cathrin Pakkianathan, B., Farich, B. A., Santana-Magal, N., Elimelech, M., Kontsedalov, S., Lebedev, G., Cilia, M., & Ghanim, M. (2015). Persistent, circulative transmission of begomoviruses by whitefly vectors. Current Opinion in Virology, 15, 1–8.CrossRefGoogle Scholar
  25. Saeed, M., Briddon, R. W., Dalakouras, A., Krczal, G., & Wassenegger, M. (2015a). Functional analysis of cotton leaf curl Kokhran virus/cotton leaf curl Multan betasatellite RNA silencing suppressors. Biology, 4, 697–714.CrossRefGoogle Scholar
  26. Saeed, M., Krczal, G., & Wassenegger, M. (2015b). Three gene products of a begomovirus--betasatellite complex restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana. Virus Genes, 50, 340–344.CrossRefGoogle Scholar
  27. Sahu, A. K., Marwal, A., Shahid, M. S., Nehra, C., & Gaur, R. K. (2014). First report of a begomovirus and associated betasatellite in Rosa indica and in India. Australasian Plant Disease Notes, 9, 147.CrossRefGoogle Scholar
  28. Saunders, K., Bedford, I. D., Briddon, R. W., Markham, P. G., Wong, S. M., & Stanley, J. (2000). A unique virus complex causes Ageratum yellow vein disease. Proceedings of the National Academy of Sciences U S A, 97, 6890–6895.CrossRefGoogle Scholar
  29. Shakir, S., Nawaz-ul-Rehman, M. S., Mubin, M., & Ali, Z. (2018). Characterization, phylogeny and recombination analysis of Pedilanthus leaf curl virus-Petunia isolate and its associated betasatellite. Virology Journal, 15, 134.CrossRefGoogle Scholar
  30. Singh, S., Verma, V. S., & Padma, R. (1975). A mosaic disease of Digera arvensis Forsk. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 82, 180–182.Google Scholar
  31. Tahir, M., Haider, S., Iqbal, J., & Briddon, R. W. (2009). Association of a distinct begomovirus and a betasatellite with leaf curl symptoms in Pedilanthus tithymaloides. Journal of Phytopathology, 157, 188–193.CrossRefGoogle Scholar
  32. Tahir, M. N., Hameed, A., Amin, I., & Mansoor, S. (2017). Characterization of a begomovirus-betasatellite complex, producing defective molecules in spinach (Spinacia oleracea L.), a new host for begomovirus and betasatellite complex in Pakistan. Plant Pathology Journal, 33, 514–521.CrossRefGoogle Scholar
  33. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefGoogle Scholar
  34. Yasmin, S., Raja, N. I., Hameed, S., & Brown, J. K. (2017). First association of Pedilanthus leaf curl virus, Papaya leaf curl virus, Cotton leaf curl Kokhran virus, and papaya leaf curl betasatellite with symptomatic chilli pepper in Pakistan. Plant Disease, 101, 2155.CrossRefGoogle Scholar
  35. Zaidi, S. S. A., Amin, I., Iqbal, Z., Akhtar, K. P., Scheffler, B. E., & Mansoor, S. (2016a). Sesbania bispinosa, a new host of a begomovirus-betasatellite complex in Pakistan. Canadian Journal of Plant Pathology, 38, 107–111.CrossRefGoogle Scholar
  36. Zaidi, S. S. A., Shafiq, M., Amin, I., Scheffler, B. E., Scheffler, J. A., Briddon, R. W., & Mansoor, S. (2016b). Frequent occurrence of tomato leaf curl New Delhi virus in cotton leaf curl disease affected cotton in Pakistan. PLoS One, 11(5), e0155520.CrossRefGoogle Scholar
  37. Zerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P., Moriones, E., Navas-Castillo, J., Rivera-Bustamante, R., Roumagnac, P., & Consortium, I. R. (2017). ICTV virus taxonomy profile: Geminiviridae. Journal of General Virology, 98, 131–133.CrossRefGoogle Scholar
  38. Zhou, X. (2013). Advances in understanding begomovirus satellites. Annual Review of Phytopathology, 51, 357–381.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Afzal Akram
    • 1
    • 2
    • 3
  • Khalid Pervaiz Akhtar
    • 4
  • Najeeb Ullah
    • 4
  • Muhammad Qasim Aslam
    • 1
    • 2
  • Peter Moffett
    • 3
  • Shahid Mansoor
    • 1
  • Rob W. Briddon
    • 1
  • Muhammad Saeed
    • 1
    Email author
  1. 1.Agricultural Biotechnology DivisionNational Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
  2. 2.Pakistan Institute of Engineering and Applied Sciences (PIEAS)IslamabadPakistan
  3. 3.Département de BiologieUniversité de SherbrookeSherbrookeCanada
  4. 4.Nuclear Institute for Agriculture and BiologyFaisalabadPakistan

Personalised recommendations