Advertisement

Potential use of Streptomyces mycarofaciens SS-2-243 as a biofumigant to protect maize seeds against two aflatoxin producing fungi

  • Sawai BoukaewEmail author
  • Wanida Petlamul
  • Purawich Phitthayaphinant
  • Poonsuk PrasertsanEmail author
Article

Abstract

Streptomyces mycarofaciens SS-2-243 has been found to produce non-volatile compounds possessing antifungal activity against the growth of plant pathogens, but the effect of its volatile compounds remain unknown. Therefore, the efficacy of volatile compounds from S. mycarofaciens SS-2-243 (volatiles SS-2-243) grown on wheat seeds for 12 days was evaluated against four pathogenic fungi. In vitro studies using an antifungal bioassay tests on PDA dishes indicated that the volatiles SS-2-243 could totally suppress the growth of all four strains with most pronounced activity (100% inhibition) against Aspergillus parasiticus TISTR 3276 and A. flavus TISTR 3041. Identification of the volatiles SS-2-243 using gas chromatography–mass spectrometry (GC–MS) revealed 33 compounds, with the most abundant being 2-methylisoborneol. Effect of the inoculum size and spore concentration of S. mycarofaciens SS-2-243 prepared as a wheat seed inoculum on the suppression of the two aflatoxin producing fungi was studied. Complete growth inhibition (100%) was achieved at the optimum wheat seed inoculum size of at least 30 g L−1 and 107 spore mL−1. Use of 30 g L−1 wheat seed culture of S. mycarofaciens SS-2-243 could completely kill the conidia of A. parasiticus TISTR 3276 and A. flavus TISTR 3041 with 1 h and 3 h exposures, respectively. Based on the promising antifungal activity of the volatiles SS-2-243, fumigation with 30 g L−1 wheat seed culture of S. mycarofaciens SS-2-243 for 24 h completely controlled the growth of the two aflatoxin producing fungi infecting maize seeds, without adverse effects on maize seed germination. The main effect of the volatiles SS-2-243 was damage and complete inhibition of conidia germination as evident by scanning electron microscope (SEM) images. Therefore, this biofumigant has good potential to control the two aflatoxin producing fungi.

Keywords

Aflatoxin producing fungi Biofumigation Maize seeds Streptomyces mycarofaciens Volatile compounds 

Notes

Acknowledgements

This research study was financially supported by the Agricultural Research Development Agency (Public Organization) grant number PRP5905021490 and the Thailand Research Fund (grant no. RTA6080010). The copyediting service of RDO/PSU and proof-reading by Dr. Seppo Karrila are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare having no conflict of interest.

Human and animal studies

This research did not involve human and/or animal participants.

Supplementary material

10658_2019_1782_MOESM1_ESM.docx (62 kb)
ESM 1 (DOCX 62 kb)

References

  1. Arrebola, E., Sivakumar, D., & Korsten, L. (2010). Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biological Control, 53, 122–128.CrossRefGoogle Scholar
  2. Boukaew, S., & Prasertsan, P. (2014). Suppression of rice sheath blight disease using heat stable culture filtrate of Streptomyces philanthi RM-1-138. Crop Protection, 61, 1–10.CrossRefGoogle Scholar
  3. Boukaew, S., Chuenchit, S., & Petcharat, V. (2011). Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl, 56, 365–374.CrossRefGoogle Scholar
  4. Boukaew, S., Plubrukarn, A., & Prasertsan, P. (2013). Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solanion rice leaf. BioControl, 58, 471–482.CrossRefGoogle Scholar
  5. Boukaew, S., Prasertsan, P., Troulet, C., & Bardin, M. (2017a). Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. BioControl, 62, 793–803.CrossRefGoogle Scholar
  6. Boukaew, S., Prasertsan, P., & Sattayasamitsathit, S. (2017b). Evaluation of antifungal activity of essential oils against aflatoxigenic Aspergillus flavus and their allelopathic activity from fumigation to protect maize seeds during storage. Industrial Crops and Products, 97, 558–566.CrossRefGoogle Scholar
  7. Boukaew, S., Petlamul, W., Bunkrongcheap, R., Chookaew, T., Kabbua, T., Thippated, A., & Prasertsan, P. (2018). Fumigant activity of volatile compounds of Streptomyces philanthi RM-1-138 and pure chemicals (acetophenone and phenylethyl alcohol) against anthracnose pathogen in postharvest chili fruit. Crop Protection, 103, 1–8.CrossRefGoogle Scholar
  8. Braun, G., Vailati, M., Prange, R., & Bevis, E. (2012). Muscodor albus volatiles control toxigenic fungi under controlled atmosphere (CA) storage conditions. International Journal of Molecular Science, 13, 15848–15858.CrossRefGoogle Scholar
  9. Bruce, A., Stewart, D., Verrall, S., & Wheatley, R. E. (2003). Effect of volatiles from bacteria and yeast on the growth and pigmentation of sapstain fungi. International Biodeterioration & Biodegradation, 51, 101–108.CrossRefGoogle Scholar
  10. Chen, Y. Y., Chen, P. C., & Tsay, T. T. (2016). The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biological Control, 98, 34–42.CrossRefGoogle Scholar
  11. Demain, A. L. (2000). Small bugs, big business: The economic power of the microbe. Biotechnology Advances, 18, 499–514.CrossRefGoogle Scholar
  12. Doolotkeldieva, T. D. (2010). Microbiological control of flour-manufacture: Dissemination of mycotoxins producing fungi in cereal products. Microbiology Insights, 3, 1–15.CrossRefGoogle Scholar
  13. Eckert, C. T., Frigo, E. P., Albrecht, L. P., Albrecht, A. J. P., Christ, D., Santos, W. G., Berkembrock, E., & Egewarth, V. A. (2018). Maize ethanol production in Brazil: Characteristics and perspectives. Renewable and Sustainable Energy Reviews, 82, 3907–3912.CrossRefGoogle Scholar
  14. Elango, V., Manjukarunambika, K., Ponmurugan, P., & Marimuthu, S. (2015). Evaluation of Streptomyces spp. for effective management of Poria hypolateritia causing red root-rot disease in tea plants. Biological Control, 89, 75–83.CrossRefGoogle Scholar
  15. Grimme, E., Zidack, N. K., Sikora, R. A., Strobel, G. A., & Jacobsen, B. J. (2007). Comparison of Muscodor albus volatiles with a biorational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Disease, 91, 220–225.CrossRefGoogle Scholar
  16. Huang, R., Li, G. Q., Zhang, J., Yang, L., Che, H. J., Jiang, D. H., & Huang, H. C. (2011). Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101, 859–869.CrossRefGoogle Scholar
  17. Kordali, S., Cakir, A., Akcin, T. A., Mete, E., Akcin, A., Aydin, T., & Kilic, H. (2009). Antifungal and herbicidal properties of essential oils and n-hexane extracts of Achillea gypsicola hub-Mor and Achillea biebersteinii Afan. Industrial Crops and Products, 29, 562–570.CrossRefGoogle Scholar
  18. Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., & Hsiang, T. (2010). Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biology and Technology, 58, 157–165.CrossRefGoogle Scholar
  19. Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., & Hsiang, T. (2012). Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biological Control, 61, 113–120.CrossRefGoogle Scholar
  20. Li, W. R., Shi, Q. S., Ouyang, Y. S., Chen, Y. B., & Duan, S. S. (2013). Antifungal effects of citronella oil against Aspergillus niger ATCC 16404. Applied Microbiology and Biotechnology, 97, 7483–7492.CrossRefGoogle Scholar
  21. Li, J., Liu, W., Luo, L., Dong, D., Liu, T., Zhang, T., Lu, C., Liu, D., Zhang, D., & Wu, H. (2015). Expression of Paenibacillus polymyxa β-1,3-1,4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea. Biological Control, 90, 141–147.CrossRefGoogle Scholar
  22. Ng'ang'a, J., Mutungi, C., Imathiu, S., & Affognon, H. (2016). Effect of triple-layer hermetic bagging on mould infection and aflatoxin contamination of maize during multi-month on-farm storage in Kenya. Journal of Stored Products Research, 69, 119–128.CrossRefGoogle Scholar
  23. Picot, A., Ortega-Beltran, A., Puckett, R. D., Siegel, J. P., & Michailides, T. J. (2017). Period of susceptibility of almonds to aflatoxin contamination during development in the orchard. European Journal of Plant Pathology, 148, 521–531.CrossRefGoogle Scholar
  24. Preethi, R., Vimal Devanathan, V., & Loganathan, M. (2010). Antimicrobial and antioxidant efficacy of some medicinal plants against food borne pathogens. Advances in Biological Research, 4, 122–125.Google Scholar
  25. Qiming, X., Haidong, C., Huixian, Z., & Daqiang, Y. (2006). Allelopathic activity of volatile substance from submerged macrophytes on Microcystin aeruginosa. Acta Ecologica Sinica, 26, 3549–3554.CrossRefGoogle Scholar
  26. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steubaurt, W. (2003). Chitosan as antimicrobial agent:Applications and mode of action. Biomacromolecules, 4, 1457–1465.CrossRefGoogle Scholar
  27. Rammanee, K., & Hongpattarakere, T. (2011). Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Technology, 4, 1050–1059.CrossRefGoogle Scholar
  28. Razzaghi-Abyaneh, M., Saberi, R., Sharifan, A., Rezaee, M. B., Seifili, R., Hosseini, S. I., Shams-Ghahfarokhi, M., Nikkhah, M., Saberi, I., & Amani, A. (2013). Effects of Heracleum persicum ethyl acetate extract on the growth,mycelialultrastructure and aflatoxin biosynthesis in Aspergillus parasiticus. Mycotoxin Research, 29, 261–269.CrossRefGoogle Scholar
  29. Roze, L. V., Beaudry, R. M., Arthur, A. E., Calvo, A. E., & Linz, A. E. (2007). Aspergillus volatiles regulate aflatoxin synthesis and asexual sporulation in Aspergillus parasiticus. Applied and Environmental Microbiology, 73, 7268–7276.CrossRefGoogle Scholar
  30. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100, 4927–4932.CrossRefGoogle Scholar
  31. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026.CrossRefGoogle Scholar
  32. Sangmanee, P., & Hongpattarakere, T. (2014). Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Control, 40, 224–233.CrossRefGoogle Scholar
  33. Shaista, K., Memon, A. N., Ghanghro, A. B., & Ibtessam, T. (2011). Fractionation and characterization of seed storage proteins from different wheat varieties cultivated in Sindh on SDS-PAGE electrophoresis. Pakistan Journal of Nutrition, 10, 139–142.CrossRefGoogle Scholar
  34. Shakeel, Q., Lyu, A., Zhang, J., Wu, M., Chen, S., Chen, W., Li, G., & Yang, L. (2016). Optimization of the cultural medium and conditions for production of antifungal substances by Streptomyces platensis 3-10 and evaluation of its efficacy in suppression of clubroot disease (Plasmodiophora brassicae) of oilseed rape. Biological Control, 101, 59–68.CrossRefGoogle Scholar
  35. Shimizu, M., Yazawa, S., & Ushijima, Y. (2009). A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. Journal of General Plant Pathology, 75, 27–36.CrossRefGoogle Scholar
  36. Singh, S. P., & Gaur, R. (2017). Endophytic Streptomyces spp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea. Biological Control, 104, 44–56.CrossRefGoogle Scholar
  37. Strobel, G. (2011). Muscodor species-endophytes with biological promise. Phytochemistry Reviews, 10, 165–172.CrossRefGoogle Scholar
  38. Strobel, G. A., Kluck, K., Hess, W. M., Sears, J., Ezra, D., & Vargas, P. N. (2007). Muscodor albus E-6, an endophyte of Guazuma ulmifolia making volatile antibiotics: Isolation, characterization and experimental establishment in the host plant. Microbiology, 153, 2613–2620.CrossRefGoogle Scholar
  39. Sumalan, R. M., Alexa, E., & Poiana, A. M. (2013). Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat. Chemistry Central Journal, 7, 1–12.CrossRefGoogle Scholar
  40. Suwannarach, N., Kumla, J., Bussaban, B., McKenzie, E. H. C., Hyde, K. D., Mutsui, K., & Lumyong, S. (2013). Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand. Annals of Microbiology, 63, 1341–1351.CrossRefGoogle Scholar
  41. Suwannarach, N., Bussaban, B., Nuangmek, W., Pithakpol, W., Jirawattanakul, B., Matsuif, K., & Lumyonga, S. (2015). Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. Journal of the Science of Food and Agriculture, 96, 339–345.CrossRefGoogle Scholar
  42. Tamreihao, K., Ningthoujam, D. S., Nimaichand, S., Singh, E. S., Reena, P., Singh, S. H., & Nongthomba, U. (2016). Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiological Research, 192, 260–270.CrossRefGoogle Scholar
  43. Valdez-Ortiz, A., Medina-Godoy, S., Valverde, M. E., & Paredes-Lopez, O. (2007). A transgenic tropical maize line generated by the direct transformation of the embryo-scutellum by A. tumefaciens. Plant Cell Tiss Organ Cult, 91, 201–214.CrossRefGoogle Scholar
  44. Vespermann, A., Kai, M., & Piechulla, B. (2007). Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Applied and Environmental Microbiology, 73, 5639–5641.CrossRefGoogle Scholar
  45. Walter, M. Y., & Crawford, D. L. (1995). Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology, 61, 3119–3128.Google Scholar
  46. Wan, M., Li, G., Zhang, J., Jiang, D., & Huang, H. C. (2008). Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biological Control, 46, 552–559.CrossRefGoogle Scholar
  47. Wang, C., Wang, Z., Qiao, X., Li, Z., Li, F., Chen, M., Wang, Y., Huang, Y., & Cui, H. (2013). Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiology Letter, 341, 45–51.CrossRefGoogle Scholar
  48. Yang, E. J., & Chang, H. C. (2010). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology, 139, 56–63.CrossRefGoogle Scholar
  49. Young, G. P., & Bush, J. K. (2009). Assessment of the allelopathic potential of Juniperus ashei on germination and growth of Bouteloua curtipendula. Journal of Chemical Ecology, 35, 74–80.CrossRefGoogle Scholar
  50. Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15, 129–144.CrossRefGoogle Scholar
  51. Zheng, M., Shi, J., Shi, J., Wang, Q., & Yanhua, Y. (2013). Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biological Control, 65, 200–206.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.College of Innovation and ManagementSongkhla Rajabhat UniversitySongkhlaThailand
  2. 2.Faculty of Technology and Community DevelopmentThaksin UniversityPhatthalungThailand
  3. 3.Research and Development OfficePrince of Songkla UniversitySongkhlaThailand

Personalised recommendations