European Journal of Plant Pathology

, Volume 155, Issue 1, pp 307–317 | Cite as

Expression of osa-miR7695 against the blast fungus Magnaporthe oryzae in Vietnamese rice cultivars

  • Nguyen Bao QuocEmail author
  • Nguyen Doan Nguyen Phuong
  • Ho Thi Thu Trang
  • Nguyen Bang Phi
  • Nguyen Ngoc Bao Chau


Magnaporthe oryzae causes rice blast disease, which leads to devastating yield losses in Vietnam and other rice-growing countries. Recent studies indicated that 30% of rice- growing areas are affected by rice blast disease. MicroRNAs (miRNAs) are short non-coding RNAs that are related to plant development and biotic stress tolerance. Osa-miR7695 as one of the common miRNAs, and its target the OsNramp6 gene were evaluated as factors that contribute to the pathogenic activity of different rice cultivars. The expression profile of microRNA osa-miR7695 was evaluated to identify blast resistance or susceptibility in rice cultivars. Results of RT-PCR and real-time qPCR indicated the presence of osa-miR7695 in most Oryzae sativa Indica group cultivars in Vietnam. Upregulation of osa-miR7695 observed in blast resistant rice cultivars at different infection time intervals was higher than in blast non-resistant rice cultivars. Expression of the OsNramp6 gene increased in blast non-resistant cultivars, particularly at 72 h post inoculation. Average ΔCt values of osa-miR7695 in blast resistant rice cultivars were higher by approximately 4-fold than in blast non-resistant rice cultivars. Results suggested osa-miR7695 as a potential biomarker for microRNA based detection of blast resistance and non-resistance in Vietnamese rice cultivars to improve understanding of the biological role of microRNA in rice immunity.


osa-miR7695 Nramp 6 qRT-PCR Magnaporthe oryzae Regulation 



We are thankful to the Research Institute for Biotechnology and Environment, Nong Lam University, Vietnam for supporting this research that was supported by a grant from the Department of Science and Technology, Ho Chi Minh City (No#205/2016/HD-SKHCN), Vietnam.

Compliance with ethical standards

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Baldrich, P., Campo, S., Wu, M. T., Liu, T. T., Hsing, Y. I. C., & Segundo, B. S. (2015). MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biology, 12(8), 847–863.CrossRefGoogle Scholar
  2. Campo, S., Peris-Peris, C., Siré, C., Moreno, A. B., Donaire, L., Zytnicki, M., Notredame, C., Llave, C., & San Segundo, B. (2013). Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytologist, 199(1), 212–227.CrossRefGoogle Scholar
  3. Cellier, M., Prive, G., Belouchi, A., Kwan, T., Rodrigues, V., Chia, W., & Gros, P. (1995). Nramp defines a family of membrane proteins. Proceedings of the National Academy of Sciences, 92, 10089–10093.CrossRefGoogle Scholar
  4. Cellier, M., Belouchi, A., & Gros, P. (1996). Resistance to intracellular infections: Comparative genomic analysis of Nramp. Trends in Genetics, 12, 201–204.CrossRefGoogle Scholar
  5. Chiou, T. J., Aung, K., Lin, S. I., Wu, C. C., Chiang, S. F., & Su, C. L. (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18, 412–421.CrossRefGoogle Scholar
  6. Choi, Y. W., Hyde, K. D., & Ho, W. H. (1999). Single spore isolation of fungi. Fungal Diversity, 3, 29–38.Google Scholar
  7. Comai, L., & Zhang, B. (2012). MicroRNAs: Key gene regulators with versatile functions. Plant Molecular Biology, 80(1), 1.CrossRefGoogle Scholar
  8. Dong, S., Zhang, J., Sun, D., Liu, H., Yang, Q., Wang, H., Chen, Z., & Wang, J. (2018). Identification of Magnaporthe oryzae-elicited rice novel miRNAs and their targets by miRNA and degradome sequencing. European Journal of Plant Pathology, 151(3), 629–647.CrossRefGoogle Scholar
  9. Fei, Q., Yang, L., Liang, W., Zhang, D., & Meyers, B. C. (2016). Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways. Journal of Experimental Botany, 67(21), 6037–6049.CrossRefGoogle Scholar
  10. Jeong, D. H., & Green, P. J. (2013). The role of rice microRNAs in abiotic stress responses. Journal of Plant Biology, 56(4), 187–197.CrossRefGoogle Scholar
  11. Jone-Rhoades, M. W., Bartel, D. P., & Bartel, B. (2006). MicroRNAs and their regulator roles in plants. Annual Review of Plant Biology, 57, 19–53.CrossRefGoogle Scholar
  12. Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14(6), 787–799.CrossRefGoogle Scholar
  13. Khraiwesh, B., Zhu, J. K., & Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and a biotic stress responses of plants. Biochimca et Biophysica Acta, 1819(2), 137–148.CrossRefGoogle Scholar
  14. Lamari, L. (2008). ASSESS 2.0 Image Analysis Software for Plant Disease Quantification. St. Paul: American Phytopathological Society.Google Scholar
  15. Lemanceau, P., Expert, D., Gaymard, F., Bakker, P.A.H.M., & Briat, J.F. (2009) Role of Iron in plant microbe interactions. In L.C. Van Loon, (Ed.), Advances in botanical research 51 (pp. 491–549). Academic Press.Google Scholar
  16. Li, Y., Lu, Y. G., Shi, Y., Wu, L., Xu, Y. J., Huang, F., Guo, X. Y., Zhang, Y., Fan, J., Zhao, J. Q., Zhang, H. Y., Xu, P. Z., Zhou, J. M., Wu, X. J., Wang, P. R., & Wang, W. M. (2014). Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiology, 164(2), 1077–1092.CrossRefGoogle Scholar
  17. Li, Y., Zhao, S., Li, J., Hu, X., Wang, H., Cao, X., Xu, Y., Zhao, Z., Xiao, Z., Yang, N., Fan, J., Huang, F., & Wang, W. (2017). Osa-miR169 negatively regulates rice immunity against the blast fungus, Magnaporthe oryzae. Frontiers in Plant Science, 8, 2.PubMedPubMedCentralGoogle Scholar
  18. Liu, G., Greenshields, D. L., Sammynaiken, R., Hirji, R. N., Selvaraj, G., & Wei, Y. (2007). Targeted alterations in iron homeostasis underlie plant defense responses. Journal of Cell Science, 120, 596–605.CrossRefGoogle Scholar
  19. Lu, W. H., Wang, X. Z., Zheng, Q., Guan, S. H., Xin, P., & Sun, Y. Q. (2008). Diversity and stability study on rice mutants induced in space environment. Genomics, Proteomics & Bioinformatics, 6(1), 51–60.CrossRefGoogle Scholar
  20. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., & Jones, J. D. G. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312(5772), 436–439.CrossRefGoogle Scholar
  21. Nelson, N. (1999). Metal ion transporter and homocostasis. The EMBO Journal, 18(16), 4361–4371.CrossRefGoogle Scholar
  22. Nevo, Y., & Nelson, N. (2006). The NRAMP family of metal-ion transporters. Biochimca et Biophysica Acta, 1763(7), 609–620.CrossRefGoogle Scholar
  23. Nunes, C. C., Gowda, M., Sailsbery, J., Xue, M., Chen, F., Brown, D. E., Oh, Y., Mitchell, T. K., & Dean, R. A. (2011). Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae. BMC Genomics, 12, 288.CrossRefGoogle Scholar
  24. Peris-Peris, C., Serra-Cardona, A., Sanchez-Sanuy, F., Campo, S., Arino, J., & San-Segundo, B. (2017). Two Nramp6 isoforms function as Iron and manganese transporter and contribute to disease resistance in rice. Molecular Plant-Microbe Interactions, 30(5), 385–398.CrossRefGoogle Scholar
  25. Quoc, N. B., Phuong, N. D. N., Ngan, T. K., Linh, N. T. M., Cuong, P. H., & Chau, N. N. B. (2018). Expression of plasma hsa-miR122 in HBV-related hepatocellular carcinoma (HCC) in Vietnam patients. Microrna, 7(2), 92–99.CrossRefGoogle Scholar
  26. Salvador-Guirao, R., Baldrich, P., Weigel, D., Rubio-Somoza, L., & San Segundo, B. (2018a). The microRNA miR733 is involved in the Arabidopsis immune response to fungal pathogens. Molecular Plant-Microbe Interactions, 31(2), 249–259.CrossRefGoogle Scholar
  27. Salvador-Guirao, R., Hsing, Y. I., & San Segundo, B. (2018b). The polycistronic miR166k-166h positively regulates rice immunity via post-transcriptional control of EIN2. Frontiers in Plant Science, 20(9), 337.CrossRefGoogle Scholar
  28. Staiger, D., Korneli, C., Lummer, M., & Navarro, L. (2013). Emerging role for RNA-based regulation in plant immunity. New Phytologist, 197(2), 394–404.CrossRefGoogle Scholar
  29. Sunkar, R., & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8), 2001–2019.CrossRefGoogle Scholar
  30. Vaucheret, H., Vazquez, F., Crété, P., & Bartel, D. P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development, 18(10), 1187–1197.CrossRefGoogle Scholar
  31. Weiberg, A., Wang, M., Bellinger, M., & Jin, H. (2014). Small RNAs: A new paradigm in plant-microbe interactions. Annual Review of Phytopathology, 52, 495–516.CrossRefGoogle Scholar
  32. Wu, L., Zhang, Q., Zhou, H., Ni, F., Wu, X., & Qi, Y. (2009). Rice microRNA effector complexes and targets. Plant Cell, 21(11), 3421–3435.CrossRefGoogle Scholar
  33. Yang, L., & Huang, H. (2014). Roles of small RNAs in plant disease resistance. Journal of Integrative Plant Biology, 56, 962–970.CrossRefGoogle Scholar
  34. Zhang, B. (2015). MicroRNA: A new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany, 66(7), 1749–1761.CrossRefGoogle Scholar
  35. Zhao, J. P., Jiang, X. L., Zhang, B. Y., & Su, X. H. (2012a). Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One, 7(9), e44968.CrossRefGoogle Scholar
  36. Zhao, Y. T., Wang, M., Fu, S. X., Yang, W. C., Qi, C. K., & Wang, X. J. (2012b). Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes. Plant Physiology, 158(2), 813–823.CrossRefGoogle Scholar
  37. Zhu, Q. H., Spriggs, A., Mathew, L., Fan, L., Kennedy, G., Gubler, F., & Helliwell, C. (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research, 18(9), 1456–1465.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Nguyen Bao Quoc
    • 1
    Email author
  • Nguyen Doan Nguyen Phuong
    • 1
  • Ho Thi Thu Trang
    • 1
  • Nguyen Bang Phi
    • 1
    • 2
  • Nguyen Ngoc Bao Chau
    • 3
  1. 1.Research Institute of Biotechnology and EnvironmentNong Lam UniversityHo Chi Minh CityVietnam
  2. 2.Thu Dau Mot UniversityThu Dau Mot CityVietnam
  3. 3.Faculty of BiotechnologyHo Chi Minh City Open UniversityHo Chi Minh CityVietnam

Personalised recommendations