Advertisement

European Journal of Plant Pathology

, Volume 155, Issue 1, pp 281–291 | Cite as

Biological activities and chemical composition of Pistacia lentiscus in controlling Fusarium wilt and root-knot nematode disease complex on tomato

  • Lobna Hajji-HedfiEmail author
  • Asma Larayedh
  • Noura-Chihani Hammas
  • Hajer Regaieg
  • Najet Horrigue-Raouani
Article
  • 166 Downloads

Abstract

The experiments were carried out under laboratory and greenhouse conditions to study the biocontrol potential of aqueous extracts of Pistacia lentiscus (L.) at different concentrations (C5: 100%, C4: 75%, C3: 50%, C2: 25%, C1:10% w/v) against Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici. In vitro assays, showed that the inhibition rate of F. oxysporum growth increased progressively by increasing the extract concentration, reaching about 83% at the highest concentration C5. However, the fungi growth rate (VC: mm/h) and the spore germination rate correlated negatively with the extract concentration. The results showed that M. javanica juvenile mortality increased significantly with all tested concentrations of plant extract after 72 h of exposure time. Furthermore, C3, C4 and C5 increased similarly the net mortality (C3: 96%, C4: 97%, C5: 96%) of M. javanica juveniles. Egg hatching decreased significantly with the increase of concentration of P. lentiscus aqueous extracts. The lowest level of egg hatching was recorded with C5 (38.2%). Furthermore, the P. lentiscus extract promoted the growth of tomato plant and reduced the incidence of wilt disease complex on tomato seedlings. The phytochemical analysis showed the high phenolic (quinic and gallic acids) and flavonoids (quercetin) content and antioxidant activity of the P. lentiscus extract. The considerable biocidal activities and valuable chemical composition suggested the future application of this plant in new bio-pesticides formulation.

Keywords

Pistacia lentiscus Biocontrol Root-knot nematode Fusarium wilt Bioactive metabolites 

Notes

Acknowledgments

The authors are grateful to the review editor and the anonymous reviewers for their helpful comments and suggestions to improve the clarity of the research paper.

Compliance with ethical standards

This research does not contain any conflicts of interest, nor research involving humans or animals.

References

  1. Abbasi, W. M., Ahmed, N., Zaki, J. M., & Shaukat, S. S. (2008). Effect of Barleria acanthoides Vahl on root-knot nematode infection and growth of infected okra and brinjal plants. Pakistan Journal of Botany, 40(5), 2193–2198.Google Scholar
  2. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.CrossRefGoogle Scholar
  3. Abdelwahed, A., Bouhlel, I., Skandrani, I., Valenti, K., Kadri, M., & Guiraud, P. (2007). Study of antimutagenic and antioxidant activities of gallic acid and 1, 2, 3, 4, 6-pentagalloylglucose from Pistacia lentiscus: Confirmation by microarray expression profiling. Chemico-Biological Interaction, 165(1), 1–13.CrossRefGoogle Scholar
  4. Adegbite, A. A., & Adesiyan, S. O. (2005). Root extracts of plants to control root-knot nematode on edible soybean. World Journal Agricultural Sciences, 1(1), 18–21.Google Scholar
  5. Benhammou, N., Atik Bekkara, F., & Panovska, T. K. (2008). Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. African Journal of Pharmacy and Pharmacology, 2, 22–28.Google Scholar
  6. Bonsignore, L. (1998). Antibacterial activity of Pistacia lentiscus aerial parts. Fitoterapia, 69, 537.Google Scholar
  7. Borrero, C., Trillas, M. I., Ordovás, J., Tello, J. C., & Avilés, M. (2004). Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology, 94(10), 94–101.CrossRefGoogle Scholar
  8. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und -Technologie /Food Science and Technology, 28, 25–30.CrossRefGoogle Scholar
  9. Caboni, P., & Ntalli, N. G. (2014). Botanical Nematicides, recent findings. In C. et Al (Ed.), Biopesticides: State of the art and future opportunities (pp. 145–157). Washington DC: American Chemical Society.Google Scholar
  10. Chitwood, D. J. (2002). Phytochemical based strategies for nematode control. Annual Review of Phytopathology, 40, 221–249.CrossRefGoogle Scholar
  11. Copping, L. G., & Duke, S. O. (2007). Natural products that have been used commercially as crop protection agents – A review. Pest Management Science, 63(6), 524–554.CrossRefGoogle Scholar
  12. De Grisse, A. T. (1969). Redescription ou modification de quelques techniques utilisée dans l’étude des nématodes phytoparasitaires. Mededelingen Rijksfaculteti der Landbouveten Gent, 351–369.Google Scholar
  13. De Pooter, H. L., Schamp, N. M., Aboutabl, E. A., El Tohamy, S. F., & Doss, S. L. (1991). Essential oils from the leaves of three Pistacia species grown in Egypt. Flavour and Fragrance Journal, 6, 229–232.CrossRefGoogle Scholar
  14. Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010–3014.CrossRefGoogle Scholar
  15. Edeoga, H. O., Okwu, D. E., & Mbaebie, B. O. (2005). Phytochemical constituents of some Nigeria medicinal plants. African Journal of Biotehnology, 4(7), 685–688.CrossRefGoogle Scholar
  16. El-Shennawy, M. Z., & Abo-Kora, M. S. (2016). Management of wilt disease complex caused by Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici on tomato using some plant extracts. J. Plant Prot. and Path., 7(12), 797–802.Google Scholar
  17. Fravel, D. R., Olivan, C., & Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytologist, 157(3), 493–502.CrossRefGoogle Scholar
  18. Hadian, S., Rahnama, K., Jamali, S., & Eskandari, A. (2011). Comparing neem extract with chemical control on Fusarium oxysporum and Meloidogyne incognita complex of tomato. Advances in Environmental Biology, 5(8), 2052–2057.Google Scholar
  19. Hajji, L., Regaieg, H., M’Hamdi-Boughalleb, N., & Horrigue-Raouani, N. (2016). Studies on disease complex incidence of Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici on resistant and susceptible tomato cultivars. Journal of Agricultural Sciences and Food Technology, 2(4), 41–48.Google Scholar
  20. Horrigue-Raouani N (2003) Variabilité de la relation hôte parasite dans le cas des Meloidogyne spp. (Nematoda: Meloidogynidae). Thèse de docteur d’état. Université Tunis-El Manar, Faculté des Sciences de Tunis, Tunisie, pp. 222.Google Scholar
  21. Hussey, R. S., & Barker, K. R. (1973). A comparison of methods of collecting inocula for Meloidogyne spp., including a new technique. Plant Disease Reporter, 57, 1025–1028.Google Scholar
  22. Hussey, R. S., & Janssen, G. J. W. (2002). Root-knot nematode: Meloidogyne species. In J. L. Starr, R. Cook, & J. Bridge (Eds.), Plant Resistance to Parasitic Nematodes (pp. 43–70). Wallingford, UK: CAB International.CrossRefGoogle Scholar
  23. Isman, M. B. (2015). A renaissance for botanical insecticides? Pest Management Science, 71, 1587–1590.CrossRefGoogle Scholar
  24. Janati, S., Houari, A., Wifaya, A., Essarioui, A., Mimouni, A., Hormatallah, A., et al. (2018). Occurrence of the root-knot nematode species in vegetable crops in Souss region of Morocco. The Plant Pathology Journal, 34(4), 308–315.PubMedPubMedCentralGoogle Scholar
  25. Janssen, A. M., Scheffer, J. J. C., & Baerheim, S. A. (1986). Antimicrobial activity of essential oils: A 1976-86 literature review. Aspect of test methods. Planta Medica, 53, 395–398.CrossRefGoogle Scholar
  26. Keniyi, M. O., Fademi, O. A., Orisajo, S. B., Adio, S. O., Otunoye, H. A., & Adekunle, O. V. (2010). Effect of botanical extracts on root-knot nematode (Meloidogyne incognita) infection and growth of cacao seedlings. Journal of Applied Biosciences, 36, 2346–2352.Google Scholar
  27. Kordali, S., Cakir, A., Zengin, H., & Duru, M. E. (2003). Antifungal activities of the leaves of three Pistacia species grown in Turkey. Fitoterapia, 74, 164–167.CrossRefGoogle Scholar
  28. Lamaison, J. L., & Carnat, A. (1990). Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D.C) en fonction de la végétation. Pharmaceutica Acta Helvetiae, 65(11), 315–320.Google Scholar
  29. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Iowa: Blackwell Publishing Ltd.CrossRefGoogle Scholar
  30. Liu, S., Wu, F., & Wen, X. (2013). Allelopathic effects of root exudates of Chinese onion on tomato growth and the pathogen Fusarium oxysporum (Sch1) f.sp. lycopersici. Allelopathy Journal, 31(2), 387–403.Google Scholar
  31. Marner, F. J., Freyer, A., & Lex, J. (1991). Triterpenoids from gum mastic, the resin of Pistacia lentiscus. Phytochemistry, 30, 3709–3712.CrossRefGoogle Scholar
  32. McGawely, E. C. (2001). Disease complex. In O. C. Maloy & T. D. Murray (Eds.), Encyclopedia of Plant Pathology (pp. 326–330). USA: John Wiley & Sons.Google Scholar
  33. Moens M, Perry RN, Starr JL (2009) Meloidogyne species – A diverse Group of Novel and Important Plant Parasites In: Perry RN, Moens M, Starr JL (2009) Root-knot nematodes Wallingford Oxfordshire UK CAB International.Google Scholar
  34. Mohammedi Z (2005) Etude de pouvoir antimicrobien et antioxydant des huiles essentielles et flavonoides de quelques plantes de la région de Tlemcen. Magistère. Université Abou Bakr Belkaid Tlemcen: pp 105.Google Scholar
  35. Nahida, S., Ansari, H., & Siddiqui, A. N. (2012). Pistacia Lentiscus: A review on Phytochemistry and pharmacological properties. International Journal of Pharmacy and Pharmaceutical Sciences, 4, 16–20.Google Scholar
  36. Nene YL, Thapliyal PN (1993) Fungicides in Plant Disease Control Oxford and IBH Publ. Co. (pp. 507). New Delhi.Google Scholar
  37. Regaieg, H., & Horrigue-Raouani, N. (2008). Biological characteristics of two populations of Meloidogyne spp. virulent to the Mi resistance gene in tomato isolated from South Tunisia. The African Journal of Plant Science and Biotechnology, 2(1), 27–29.Google Scholar
  38. Romani, A., Pinelli, P., Galardi, C., Mulinacci, N., & Tattini, M. (2002). Identification and quantification of Galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia Lentiscus L. Phytochemical Analysis, 13(2), 79–86.CrossRefGoogle Scholar
  39. Seinhorst, J. W. (1967). The relationships between population increase and population density in plant parasitic nematodes. II. Sedentary nematodes. Nematologica, 13, 157–171.CrossRefGoogle Scholar
  40. Sikora, R. A. (1992). Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annual Review of Phytopathology, 30, 245–270.CrossRefGoogle Scholar
  41. Sikora RA, Fernandez E (2005) Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (Eds) Plant parasitic nematodes in subtropical and tropical agriculture. 2nd edition, CABI publishing: pp 319–392.Google Scholar
  42. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphor molybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.Google Scholar
  43. Song, W., Zhou, L., Yang, C., Cao, X., Zhang, L., & Liu, X. (2004). Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protection, 23, 243–247.CrossRefGoogle Scholar
  44. Sosamma, V. K., & Jayasree, D. (2002). Effect of leaf extracts on the mortality of root-knot nematode, Meloidogyne incognita juveniles. Indian Journal of Nematology, 32, 183–233.Google Scholar
  45. Srivastara, L. M. (2000). Plant growth and development hormones and environment. A.P. Elsevier Science, 173–174.Google Scholar
  46. Sukul, N. C. (1992). Plants antagonistic to plant parasitic nematodes. Indian J L Sci, 12, 23–52.Google Scholar
  47. Talavera, M., Sayadi, S., Chirosa-Ríos, M., Salmerón, T., Flor-Peregrín, E., & Verdejo-Lucas, S. (2012). Perception of the impact of root-knot nematode-induced diseases in horticultural protected crops of South-Eastern Spain. Nematology, 14(5), 517–527.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences and Plant ProtectionHigher Agronomic Institute of Chott-MeriemChott-MeriemTunisia

Personalised recommendations