Advertisement

European Journal of Plant Pathology

, Volume 155, Issue 1, pp 231–238 | Cite as

Phenotypic expression and species-specific reaction of Lactuca sativa ‘PI 342444’ to groundnut ringspot virus (GRSV) and tomato spotted wilt virus (TSWV) isolates

  • M. G. FontesEmail author
  • C. S. Cabral
  • M. F. Lima
  • M. E. N. Fonseca
  • L. S. Boiteux
Original Article
  • 132 Downloads

Abstract

Currently, diseases caused by tospovirus species are among the most limiting factors for lettuce (Lactuca sativa L.) production in Brazil, where losses can reach up to 100%. In cultivated lettuce germplasm, the highest levels of resistance to tospoviruses were identified in the accession ‘PI 342444’ (= cultivar ‘Tinto’). We carried out controlled inoculation assays aiming to characterize the phenotypic expression and verify the spectrum of ‘PI 342444’-mediated resistance against a panel of isolates of two tospovirus species: Tomato spotted wilt virus (TSWV) and Groundnut ringspot virus (GRSV). Lettuce seedlings were mechanically inoculated with seven isolates (three TSWV and four GRSV). Plants of ‘PI 342444’ did not exhibit symptoms after inoculation with TSWV isolates, whereas severe symptoms were observed on the susceptible lettuce control (cultivar ‘Vanda’). The absence of TSWV infection in the majority of ‘PI 342444’ plants was also confirmed by serological testing. In contrast, all ‘PI 342444’ plants inoculated with GRSV isolates displayed early onset of severe symptoms, indicating that this resistance is not effective against this viral species. Further studies shall be conducted to characterize the genetic factors associated with a putative TSWV-specific resistance observed in ‘PI 342444’. On the other hand, our assays indicated that additional lettuce germplasm screenings searching for sources of resistance effective against GRSV isolates are among the major breeding priorities under Brazilian conditions, since this ‘PI 342444’ resistance-breaking virus is currently the predominant lettuce-infecting tospovirus species in the country.

Keywords

Lettuce Genetic resistance Germplasm Tospovirus 

Notes

Acknowledgements

Maria Geane Fontes was supported by fellowship from CAPES and CNPq. Maria Esther de N. Fonseca and Leonardo S. Boiteux were supported by fellowships from the Brazilian National Research Council (CNPq).

Compliance with ethical standards

Conflict of interest

The authors do not have any conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

All authors have reviewed the manuscript and approved its submission to European Journal of Plant Pathology.

References

  1. Adkins, S., & Rosskopf, E. N. (2002). Key West nightshade a new experimental host for plant viruses. Plant Disease, 86, 1310–1314.CrossRefGoogle Scholar
  2. Almeida, A. M. R. (1995). Noções de Sorologia Aplicadas a Fitovirologia. Londrina-PR: Embrapa – Centro Nacional de Pesquisa de Soja (CNPSo). 105 pp.Google Scholar
  3. Boiteux, L. S. (1995). Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics, 90, 146–149.CrossRefGoogle Scholar
  4. Boiteux, L. S., & de Ávila, A. C. (1994). Inheritance of a resistance specific to tomato spotted wilt virus in Capsicum chinense ‘PI 159236’. Euphytica, 75, 139–142.CrossRefGoogle Scholar
  5. Boiteux, L. S., & Giordano, L. B. (1993). Genetic basis of resistance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica, 71, 151–154.CrossRefGoogle Scholar
  6. Boiteux, L. S., Nagata, T., Dutra, W. P., & Fonseca, M. E. N. (1993). Sources of resistance to tomato spotted wilt virus (TSWV) in cultivated and wild species of Capsicum. Euphytica, 67, 89–94.CrossRefGoogle Scholar
  7. Bucher, E., Sijen, T., De Haan, P., Goldbach, R., & Prins, M. (2003). Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. Journal of Virology, 77, 1329–1336.CrossRefGoogle Scholar
  8. Cho, J. J., Custer, D. M., Brommonschenkel, S. H., & Tanksley, S. D. (1996). Conventional breeding: Host-plant resistance and the use of molecular markers to develop resistance to tomato spotted wilt virus in vegetables. Acta Horticulturae, 431, 367–378.CrossRefGoogle Scholar
  9. Clark, M. F., & Adams, A. N. (1977). Characterization of the microplate method of enzyme linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475–483.CrossRefGoogle Scholar
  10. Cortez, I., Saaijer, J., Wongjkaew, K. S., Pereira, A. M., Goldbach, R., Peters, D., & Kormelink, R. (2001). Identification and characterization of a novel tospovirus species using a new RT-PCR approach. Archives of Virology, 146, 265–278.CrossRefGoogle Scholar
  11. Costa, A. S., & Forster, R. (1941). Identidade do vírus de vira-cabeça e sua inclusão no grupo do vírus de “spotted wilt”. Bragantia, 1, 491–516.CrossRefGoogle Scholar
  12. De Ávila, A. C., de Haan, P. D., Kijatima, E. W., Kormelink, R., Resende, R. O., Goldbach, R. W., & Peters, D. (1992). Characterization of a distinct isolate of tomato spotted wilt virus (TSWV) from Impatiens sp. in the Netherlands. Journal of Phytopathology, 134, 133–151.CrossRefGoogle Scholar
  13. De Oliveira, A. S., Melo, F. L., Inoue-Nagata, A. K., Nagata, T., Kitajima, E. W., & Resende, R. O. (2012). Characterization of bean necrotic mosaic virus: A member of a novel evolutionary lineage within the genus Tospovirus. PLoS One, 7, e38634.CrossRefGoogle Scholar
  14. De Ronde, D., Butterbach, P., & Kormelink, R. (2014). Dominant resistance against plant viruses. Frontiers in Plant Science, 5, 307.CrossRefGoogle Scholar
  15. Dianese, E. C., Fonseca, M. E. N., Inoue-Nagata, A., Resende, R. O., & Boiteux, L. S. (2011). Search in Solanum (section Lycopersicon) germplasm for sources of broad-spectrum resistance to four Tospovirus species. Euphytica, 180, 307–319.CrossRefGoogle Scholar
  16. Duarte, L. M. L., Rivas, E. B., Alexandre, M. A. V., de Ávila, A. C., Nagata, T., & Chagas, C. M. (1995). Chrysanthemum stem necrosis caused by a possible novel tospovirus. Journal of Phytopathology, 143, 569–571.CrossRefGoogle Scholar
  17. Guimarães, A. M., Pavan, M. A., & Silva, N. (2009). Comportamento de progênies F5 de alface às tospoviroses em condições de campo. Unimar Ciências, 18, 37–40.Google Scholar
  18. Lima, M. F., Bariolli, C., Amaro, G. B., & Suinaga, F. A. (2013). Desempenho de acessos de alface em campo quanto à incidência de Tomato spotted wilt virus (TSWV), Groundnut ringspot virus (GRSV), Tomato chlorotic spot virus (TCSV) e Lettuce mosaic virus (LMV). In: Book of Abstracts of the 7th Brazilian Congress of Plant Breeding – (7° Congresso Brasileiro de Melhoramento Genético de Plantas). Uberlândia, MG. p.780–784.Google Scholar
  19. Lima, M. F., Michereff-Filho, M., Boiteux, L. S., & Suinaga, F. A. (2016). Doença vira-cabeça em alface causada por Tomato spotted wilt virus (TSWV), Groundnut ringspot virus (GRSV) e Tomato chlorotic spot virus (TCSV): Sintomatologia, transmissão, epidemiologia e medidas de controle. Circular Técnica Number, 153 (Embrapa Hortaliças). 16 pp.Google Scholar
  20. Nagai, H. (1989). PI 342517, uma introdução de alface com resistência ao vírus de vira cabeça. Horticultura Brasileira, 7, 66.Google Scholar
  21. Nagata, T., Resende, R. O., Kitajima, E. W., Costa, H., Inoue-Nagata, A. K., & de Ávila, A. C. (1998). First report of natural occurrence of Zucchini lethal chlorosis tospovirus on cucumber and Chrysanthemum stem necrosis tospovirus on tomato in Brazil. Plant Disease, 82, 1403.CrossRefGoogle Scholar
  22. Nagata, T., Almeida, A., Resende, R. O., & de Ávila, A. C. (2004). The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathology, 53, 136–140.CrossRefGoogle Scholar
  23. O’Malley, P. J., & Hartmann, R. W. (1989). Resistance to tomato spotted wilt virus in lettuce. HortScience, 24, 360–362.Google Scholar
  24. Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141, 2219–2236.CrossRefGoogle Scholar
  25. Pozzer, L., Bezerra, I. C., Kormelink, R., Prins, M., Peters, D., Resende, R. O., & de Ávila, A. C. (1999). Characterization of a tospovirus isolate of Iris yellow spot virus associated with a disease in onion fields in Brazil. Plant Disease, 83, 345–350.CrossRefGoogle Scholar
  26. Roselló, S., Díez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. I. the tomato spotted wilt virus—A review. Scientia Horticulturae, 67, 117–150.CrossRefGoogle Scholar
  27. Rotenberg, D., Jacobson, A. L., Schneweis, D. J., & Whitfield, A. E. (2015). Thrips transmission of tospoviruses. Current Opinion in Virology, 15, 80–89.CrossRefGoogle Scholar
  28. Schut, J. W., Thabuis, A. P. P., & Villevielle, M (2014). Tomato spotted wilt virus and/or Impatiens necrotic spot virus resistance in cultivated lettuce. World Intellectual Property Organization, International Publication Number: WO 2014/140341 A1.Google Scholar
  29. Simko, I., Richardson, C. E., & Wintermantel, W. M. (2018). Variation within Lactuca spp. for resistance to Impatiens necrotic spot virus. Plant Disease, 102, 341–348.CrossRefGoogle Scholar
  30. Snippe, M., Borst, J. W., Goldbach, R., & Kormelink, R. (2007). Tomato spotted wilt virus Gc and N proteins interact in vivo. Virology, 357, 115–123.CrossRefGoogle Scholar
  31. Stevens, M., Scott, S., & Gergerich, R. (1991). Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica, 59, 9–17.Google Scholar
  32. Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., & Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Letters, 532, 75–79.CrossRefGoogle Scholar
  33. Ullman, D. E., Whitfield, A. E., & German, T. L. (2005). Thrips and tospoviruses come of age: Mapping determinants of insect transmission. Proceedings of the National Academy of Sciences of the United States of America, 102, 4931–4932.CrossRefGoogle Scholar
  34. Van Poelwuk, F., Boye, K., Oosterling, R., Peters, D., & Goldbach, R. (1993). Detection of the L protein of tomato spotted wilt virus. Virology, 197, 468–470.CrossRefGoogle Scholar
  35. Webster, C. G., Reitz, S. R., Perry, K. L., & Adkins, S. (2011). A natural M RNA reassortment arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequences and biological properties to parental species. Virology, 413, 216–225.CrossRefGoogle Scholar
  36. Wijkamp, I., Almarza, N., Goldbach, R., & Peters, D. (1995). Distinct levels of specificity in thrips transmission of tospoviruses. Phytopathology, 85, 1069–1074.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • M. G. Fontes
    • 1
    Email author
  • C. S. Cabral
    • 1
    • 2
  • M. F. Lima
    • 2
  • M. E. N. Fonseca
    • 2
  • L. S. Boiteux
    • 1
    • 2
  1. 1.Departamento de FitopatologiaUniversidade de Brasília (UnB)BrasíliaBrazil
  2. 2.National Center for Vegetable Crops Research (CNPH), Embrapa Vegetable CropsBrasíliaBrazil

Personalised recommendations