Advertisement

European Journal of Plant Pathology

, Volume 155, Issue 1, pp 353–359 | Cite as

Tomato mottle mosaic virus in Brazil and its relationship with Tm-22 gene

  • Alice NagaiEmail author
  • Lígia M. L. Duarte
  • Alexandre L. R. Chaves
  • Lázaro E. P. Peres
  • Déborah Y. A. C. dos Santos
Article

Abstract

Tomato is an important crop, which can be infected by a wide range of pathogens. Among plant viruses, tomato mosaic virus (ToMV) had been described as the most troublesome to tomato crops. Recently, tomato mottle mosaic virus (ToMMV) has gained attention. ToMV and ToMMV are now considered as major threats to tomato. Therefore, the study of some aspects of these viral species would be an advance for the understanding of the disease in the field. In this context, our work aimed: i) to look for possible recombination events in the emergence of ToMMV, ii) to verify the involvement of Tm-22 in the resistance against ToMMV, and iii) to evaluate the behavior of ToMV and ToMMV in tomato cultivars and hybrid lines. Our results revealed no recombination events involving ToMMV. Also, our results suggested that Tm-22 confers resistance to ToMMV. Brazilian commercial cultivars and hybrid lines ‘Alambra’, ‘Débora Max’, ‘Santa Clara’, ‘Santa Cruz’, ‘Bubble Candy’, ‘Kada’ and ‘Salada’ were evaluated with ToMMV and ToMV. Only ‘Alambra’ showed partial resistance to ToMMV and ToMV and ‘Debora Max’ to ToMV. Finally, it should be noted that these commercial tomato cultivars and hybrids tested were more susceptible to the Brazilian ToMMV isolate when compared to ToMV since the symptoms were much more drastic. The results presented here have important implications for breeding virus-resistant tomatoes.

Keywords

Recombination Tm-22 Tomato; ToMMV ToMV 

Notes

Acknowledgements

We thank Dr. Andrew Thompson for providing the seeds of the Ailsa Craig with the Tm-22 allele. We also thank Dr. Pedro Luís Ramos-González for the help with the recombination analyses.

Author’s contributions

Dr. Duarte and Dr. Chaves have performed all the experiments involving the inoculation of both viruses and they have collected the samples to the PTA analyses.

Dr. Nagai has performed the PTA and recombination analyses.

Dr. Peres has suggested the work with NIL of S. lycopersicum to analyze the involvement of Tm-22 allele in the resistance against ToMMV, providing the seeds.

Dr. Chaves and Dr. Peres have contributed to the agronomic approach of the work.

Dr. Santos has supervised all the work, reading and correcting the paper, making it easier to understand.

Funding

This study was funded by Coordination for the Improvement of Higher Education Personnel (CAPES Finance Code 001, Brazil) and by the National Council for Scientific and Technological Development (CNPq) (both from departmental quota).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The research did not involve human participants and/or animals.

Supplementary material

10658_2019_1762_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 13 kb)

References

  1. Adams, M. J., Adkins, S., Bragard, C., Gilmer, D., Li, D., MacFarlane, S. A., Wong, S. M., Melcher, U., Ratti, C., Ryu, K. H., & Consortium, I. R. (2017). ICTV Virus Taxonomy Profile: Virgaviridae. The Journal of General Virology, 98, 1999–2000.  https://doi.org/10.1099/jgv.0.000884.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Almeida, A. M. R., & Lima, J. A. A. (2001). Princípios e técnicas de diagnose em fitovirologia (p. 186). Brasília/Fortaleza: Publicação SBF.Google Scholar
  3. Ambrós, S., Martínez, F., Ivars, P., Hernández, C., FDe, I., & Elena, S. F. (2016). Molecular and biological characterization of an isolate of tomato mottle mosaic virus (ToMMV) infecting tomato and other experimental hosts in a greenhouse in Valencia, Spain. bioRxiv, 1–13.Google Scholar
  4. Bujarski, J. J. (2013). Genetic recombination in plant-infecting messenger-sense RNA viruses: Overview and research perspectives. Frontiers in Plant Science, 4, 1–9.  https://doi.org/10.3389/fpls.2013.00068.CrossRefGoogle Scholar
  5. Chen, T., Liu, D., Niu, X., Wang, J., Qian, L., Han, L., Liu, N., Zhao, J., Hong, Y., & Liu, Y. (2017). Antiviral resistance protein Tm-22 functions on the plasma membrane. Plant Physiology, 173, 2399–2410.  https://doi.org/10.1104/pp.16.01512.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Delport, W., Poon, A. F. Y., Frost, S. D. W., & Pond, S. L. K. (2010). Datamonkey 2010: A suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26, 2455–2457.  https://doi.org/10.1093/bioinformatics/btq429.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dorais, M., Ehret, D. L., & Papadopoulos, A. P. (2008). Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochemistry Reviews, 7, 231–250.  https://doi.org/10.1007/s11101-007-9085-x.CrossRefGoogle Scholar
  8. Dorokhov, Y. L., Sheshukova, E. V., & Komarova, T. V. (2018). Tobamoviruses and their diversity. In R. K. Gaur, K. SMP, & Y. L. Dorokhov (Eds.), Plant viruses: Diversity, interaction and management. Boca Raton: CRC Press. Taylor & Francis Group.Google Scholar
  9. FAO, 2014. FAOSTAT. Food and agriculture organization of the United Nations, Rome, Italy.Google Scholar
  10. Fillmer, K., Adkins, S., Pongam, P., & Elia, D. (2015). Complete genome sequence of a tomato mottle mosaic virus isolate from the United States. Genome Announcements, 3, 1–2.  https://doi.org/10.1128/genomeA.00167-15.CrossRefGoogle Scholar
  11. ICTV (2017). International committee on taxonomy of viruses. Available in: <Available in: http://www.ictvonline.org/vírusTaxonomy.asp >. Access: May 28, 2018.
  12. Lanfermeijer, F. C., Dijkhuis, J., Sturre, M. J. G., de Haan, P., & Hille, J. (2003). Cloning and characterization of the durable tomato mosaic virus resistance gene tm-2 from Lycopersicon esculentum. Plant Molecular Biology, 52, 1039–1051.  https://doi.org/10.1023/a:1025434519282.CrossRefGoogle Scholar
  13. Lanfermeijer, F. C., Jiang, G., Ferwerda, M. A., Dijkhuis, J., De Haan, P., Yang, R., & Hille, J. (2004). The durable resistance gene Tm-22 from tomato confers resistance against ToMV in tobacco and preserves its viral specificity. Plant Science, 167, 687–692.  https://doi.org/10.1016/j.plantsci.2004.04.027.CrossRefGoogle Scholar
  14. Lanfermeijer, F. C., Warmink, J., & Hille, J. (2005). The products of the broken Tm-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. Journal of Experimental Botany, 56, 2925–2933.  https://doi.org/10.1093/jxb/eri288.CrossRefPubMedGoogle Scholar
  15. Li, R., Gao, S., Fei, Z., & Ling, K. S. (2013). Complete genome sequence of a new tobamovirus naturally infecting tomatoes in Mexico. Genome Announcements, 1, e00794–e00713. https://doi.org/10.1128/genomeA.00794-13
  16. Li, Y., Wang, Y., Hu, J., Xiao, L., Tan, G., Lan, P., Liu, Y., & Li, F. (2017). The complete genome sequence, occurrence and host range of tomato mottle mosaic virus Chinese isolate. Virology Journal, 14, 1–9.  https://doi.org/10.1186/s12985-016-0676-2.CrossRefGoogle Scholar
  17. Lopes, C. A., & Ávila, A. C. (2005). Doenças do tomateiro (2nd ed.). Anápolis: Embrapa Hortaliças.Google Scholar
  18. López-Gresa, M. P., Lisón, P., Kyong, H., Hae, Y., Verpoorte, R., Rodrigo, I., Conejero, V., & María, J. (2012). Metabolic fingerprinting of tomato mosaic virus infected Solanum lycopersicum. Journal of Plant Physiology, 169, 1586–1596.  https://doi.org/10.1016/j.jplph.2012.05.021.CrossRefPubMedGoogle Scholar
  19. Luria, N., Smith, E., Reingold, V., Bekelman, I., Lapidot, M., Levin, I., Elad, N., Tam, Y., Sela, N., Abu-Ras, A., Ezra, N., Haberman, A., Yitzhak, L., Lachman, O., & Dombrovsky, A. (2017). A new israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS One, 12.  https://doi.org/10.1371/journal.pone.0170429.
  20. Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1, 1–5.  https://doi.org/10.1093/ve/vev003.CrossRefGoogle Scholar
  21. Nagai A. 2017. Plant-pathogen interaction: Chemical analysis in Solanum pimpinellifolium L. and Solanum lycopersicum ‘VFNT’ infected with tomato mottle mosaic virus [Portuguese]. PhD thesis, Universisty of São Paulo, São Paulo, Brazil.Google Scholar
  22. Nagai, A., Duarte, L. M. L., Chaves, A. L. R., Alexandre, M. A. V., Chabi-Jesus, C., Harakava, R., & Santos, D. Y. A. C. (2018). First complete genome sequence of an isolate of tomato mottle mosaic virus infecting plants of Solanum lycopersicum in South America. Genome Announcements, 6, e00427–e00418.CrossRefGoogle Scholar
  23. Pond, S. L. K., & Frost, S. D. W. (2005). Datamonkey: Rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics., 21, 2531–2533.  https://doi.org/10.1093/bioinformatics/bti320.CrossRefPubMedGoogle Scholar
  24. Pond, S. L. K., Posada, D., Gravenor, M. B., Woelk, C. H., & Frost, S. D. W. (2006). Automated phylogenetic detection of recombination using a genetic algorithm. Molecular Biology and Evolution, 23, 1891–1901.  https://doi.org/10.1093/molbev/msl051.CrossRefGoogle Scholar
  25. Sztuba-Solińska, J., Urbanowicz, A., Figlerowicz, M., & Bujarski, J. J. (2011). RNA-RNA recombination in plant virus replication and evolution. Annual Review of Phytopathology, 49, 415–443.  https://doi.org/10.1146/annurev-phyto-072910-095351.CrossRefPubMedGoogle Scholar
  26. Turina, M., Geraats, B. P. J., & Ciuffo, M. (2016). First report of tomato mottle mosaic virus in tomato crops in Israel. New Disease Reports, 33, 1.  https://doi.org/10.5197/j.2044-0588.2016.033.001.CrossRefGoogle Scholar
  27. Weaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V., & Pond, S. L. K. (2018). Datamonkey 2.0: A modern Web application for characterizing selective and other evolutionary processes. Molecular Biology and Evolution, 35, 773–777.  https://doi.org/10.1093/molbev/msx335.CrossRefPubMedCentralGoogle Scholar
  28. Weber, H., Ohnesorge, S., Silber, M. V., & Pfitzner, A. J. P. (2004). The tomato mosaic virus 30 kDa movement protein interacts differentially with the resistance genes Tm-2 and Tm-22. Archives of Virology, 149, 1499–1514.  https://doi.org/10.1007/s00705-004-0312-0.CrossRefPubMedGoogle Scholar
  29. Webster, C. G., Rosskopf, E. N., Pierce, F., Lucas, L., Mellinger, H. C., Care, G. C., Adkins, S., & Pierce, F. (2014). First report of tomato mottle mosaic virus infecting tomato in the United States. Plant Health Progress, 15, 151–152.  https://doi.org/10.1094/PHP-BR-14-0023.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Alice Nagai
    • 1
    Email author
  • Lígia M. L. Duarte
    • 2
  • Alexandre L. R. Chaves
    • 2
  • Lázaro E. P. Peres
    • 3
  • Déborah Y. A. C. dos Santos
    • 1
  1. 1.Laboratório de Fitoquímica, Instituto de Biociências, Departamento de BotânicaUniversidade de São PauloSão PauloBrazil
  2. 2.Laboratório de Fitovirologia, Centro de Pesquisa de Sanidade VegetalInstituto BiológicoSão PauloBrazil
  3. 3.Laboratório de Controle Hormonal do Desenvolvimento Vegetal, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil

Personalised recommendations