European Journal of Plant Pathology

, Volume 155, Issue 1, pp 163–171 | Cite as

Synthesis and evaluation of iron(ii) sulfide aqua nanoparticles (FeS-NPs) against Fusarium verticillioides causing sheath rot and seed discoloration of rice

  • Radha AhujaEmail author
  • Anjali Sidhu
  • Anju Bala
Original Article


Pathological aspects of metal sulfide nanoparticles are lacunae in nanometal bioapplications. The present study is one of its own kind involving sonochemical synthesis and the phytopathological effect of aqua dispersed nanoparticles of ferrous sulfide (FeS-NPs) against the economically important fungus Fusarium verticillioides. In vitro antifungal evaluation against F. verticillioides showed the significant biopotential at 18 μg/ml, with deca-fold higher efficiency than the standard fungicide, carbendazim. Visible symptoms of conidial inhibition as well as membrane disruption in SEM nanographs rationalized the fungal inhibition. In vivo seed treatment on rice (Oryzae sativa) at 30 μg/ml revealed a significant reduction in seedling blight (76.08%) which is deca-fold greater than carbendazim (32.60% at 2000 μg/ml) with a comparable reduction in seed rot (82.12% for FeS-NPs and 80.76% for carbendazim). There were no morphologically visible signs of phytotoxicity at concentrations as high as 30 μg/ml giving a favorable edge to this novel FeS-NPs sample as antifungal nanopriming agent.


Antifungal activity Fusarium verticillioides Germination Iron sulfide Nanoparticles Rice SEM 


Compliance with ethical standards

Conflict of interest

Authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.


  1. Alam, M. J., Sultana, F., & Iqbal, M. T. (2015). Potential of iron nanoparticles to increase germination and growth of wheat seedling. Journal of Nanoscience with Advanced Technology, 1, 14–20.CrossRefGoogle Scholar
  2. Booth, C. (1977). Fusarium: Laboratory guide to the identification of the major species. Commonwealth Mycological Institute, pp 58.Google Scholar
  3. Bozzola, J. J., & Russell, L. D. (1999). Electron microscopy: Principles and techniques for biologists (pp. 670–671). Boston: Jones and Bartlett Publishers.Google Scholar
  4. Das, C. K., Srivastava, G., Dubey, A., Roy, M., Jain, S., Sethy, N. K., Saxena, M., Harke, S., Sarkar, S., Misra, K., Singh, S. K., Bhargava, K., Philip, D., & Das, M. (2016). Nano-iron pyrite seed dressing: A sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnology for Environmental Engineering, 1(1), 1–12.CrossRefGoogle Scholar
  5. Das, C. K., Jangir, H., Kumar, J., Verma, S., Mahapatra, S. S., Philip, D., Srivastava, G., & Das, M. (2018). Nano-pyrite seed dressing: A sustainable design for NPK equivalent rice production. Nanotechnology for Environmental Engineering, 3(1), 1–14.CrossRefGoogle Scholar
  6. Dehner, C. A., Barton, L., Maurice, P. A., & Du-Bois, J. L. (2011). Size-dependent bioavailability of hematite (a-Fe2O3) nanoparticles to a common aerobic bacterium. Environmental Science and Technology, 45, 977–983.CrossRefPubMedGoogle Scholar
  7. Faria, C. B., Abe, C. A. L., Silva, C. N. D., Tessmann, D. J., & Barbosa-Tessmann, L. P. (2012). New PCR assay for the identification of Fusarium verticillioides, Fusarium subglutinans, and other species of Gibberella fujikuroi complex. International Journal of Molecular Sciences, 13, 115–132.CrossRefPubMedGoogle Scholar
  8. Finney, D. J. (1971). Probit Analysis. Cambridge: Cambridge University Press.Google Scholar
  9. Guo, L., Panderi, I., Yan, D. D., Szulak, K., Li, Y., Chen, Y., Ma, H., Niesen, D. B., Seeram, N., Ahmed, A., et al. (2013). A comparative study of hollow copper sulfide nanoparticles and hollow gold nanosphere on degradability and toxicity. ACS Nano, 7, 8780–8793.CrossRefPubMedGoogle Scholar
  10. Hoewyk, V. D., Sabdel-Ghanny, S. E., Cohu, C. M., Herbert, S. K., Kugens, P., Pilon, M., & Pilon-Smits, E. A. (2007). Chloroplast iron-sulfur cluster protein maturation requires the essential cystein desulfurase CpNifs. Proceedings of the National Academy of Sciences, 104, 5686–5691.CrossRefGoogle Scholar
  11. ISTA. (1999). International rules for seed testing. Seed Science and Technology, 31, 1–152.Google Scholar
  12. Mthethwa, T., Pullabhotla, V. S. R., Mdluli, P. S., Wesley-Smith, J., & Revaprasadu, N. (2009). Synthesis of hexadecylamine capped nanoparticles using heterocyclic cadmium dithiocarbamates as single source precursors. Polyhedron, 28, 2977–2982.CrossRefGoogle Scholar
  13. Mulé, G., Susca, A., Stea, G., & Moretti, A. (2004). A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. European Journal of Plant Pathology, 110, 495–502.CrossRefGoogle Scholar
  14. Nene, Y. L., & Thapliyal, P. N. (Eds.). (1997). Fungicides in Plant Disease Control (p. 1997). New Delhi: India.Google Scholar
  15. Prodan, A. M., Iconaru, S. L., Chifiriuc, C. M., Bleotu, C., Ciobanu, C. S., Motelica-Heino, M., Sizaret, S., & Predoi, D. (2013). Magnetic properties and biological activity evaluation of iron oxide nanoparticles. Journal of Nanomaterials, 2013, 1–7.Google Scholar
  16. Rawat, M., Nayan, R., Negi, B., Zaidi, M. G. H., & Arora, S. (2017). Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in b. juncea. Plant Physiology and Biochemistry, 118, 274–284.CrossRefPubMedGoogle Scholar
  17. Sergey, B., Mitchell, L. F., Jennifer, S., Yaolin, X., Yuping, B., & Katrina, M. R. (2015). Developmental and reproductive effects of iron oxide nanoparticles in arabidopsis thaliana. International Journal of Molecular Sciences, 16, 24174–24193.CrossRefGoogle Scholar
  18. Sheykhbaglou, R., Sedghi, M., Tajbakhsh-Shishenan, M., & Seyed-Shrifi, R. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Science Biology, 2, 112–113.CrossRefGoogle Scholar
  19. Sidhu, A., Barmota, H., & Bala, A. (2017). Antifungal evaluation studies of copper sulfide aqua-nanoformulations and its impact on seed quality of rice (Oryzae sativa). Applied Nanotechnology, 7, 681–689.Google Scholar
  20. Srivastava, G., Das, A., Kusurkar, T. S., Roy, M., Airan, S., Sharma, R. K., Singh, S. K., Sarkar, S., & Das, M. (2014a). Iron pyrite, a potential photovoltaic material, increases plant biomass upon seed pretreatment. Materials Express, 4, 23–31.CrossRefGoogle Scholar
  21. Srivastava, G., Das, C. K., Das, A., Singh, S. K., Roy, M., Hansung, K., Sethy, N., Kumar, A., Sharma, R. K., Singh, S. K., et al. (2014b). Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Advances, 4, 58495–58502.CrossRefGoogle Scholar
  22. Wang, Z., Bussche, A. V. D., Kabadi, P. K., Kane, A. B., & Hurt, R. H. (2013). Biological and environmental transformation of copper-based nanomaterials. ACS Nano, 7, 8715–8727.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Wang, J., Fang, Z., Wen, C., Yan, X., & Tsang, P. E. (2016). Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited iron transportation. Environmental Pollution, 210, 338–345.CrossRefPubMedGoogle Scholar
  24. Xia, Z. H., Ma, Q. H., Li, S. H., Zhang, D. Q., Cong, L., Tian, Y. L., & Yang, R. Y. (2016). The antifungal effect of silver nanoparticles on trichosporon asahii. Journal of Microbiology, Immunology and Infection, 49, 182–188.CrossRefGoogle Scholar
  25. Yasmeen, F., Razzaq, A., Iqbal, M. N., & Jhanzab, H. M. (2015). Effects of silver, copper and iron nanoparticles on wheat germination. International Journal of Biosciences, 6, 112–117.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Department of ChemistryPunjab Agricultural UniversityLudhianaIndia
  2. 2.Department of Plant Breeding and GeneticsPunjab Agricultural UniversityLudhianaIndia

Personalised recommendations