Advertisement

Individual field-collected glassy-winged sharpshooter vectors harbor sequences from two Xylella fastidiosa subspecies

  • Drake C. StengerEmail author
  • Lindsey P. Burbank
  • Rodrigo Krugner
  • Mark S. Sisterson
Article
  • 38 Downloads

Abstract

During 2016 and 2017, glassy-winged sharpshooters (GWSS; Homalodisca vitripennis) collected from vineyards with a known history of Pierce’s disease or nearby citrus orchards in Kern County, California were assessed for presence of Xylella fastidiosa by quantitative PCR using total DNA samples extracted from GWSS heads. Conventional PCR products for three X. fastidiosa housekeeping genes (petC, leuA, and holC) were cloned from a subset of X. fastidiosa-positive GWSS DNA samples. Cloned sequences were assigned to X. fastidiosa subspecies based on Single Nucleotide Polymorphism (SNP) signature barcodes (7–12 polymorphic sites per amplicon that differentiate reference genomes of subspecies fastidiosa and multiplex). A total of 2005 clones were sequenced: 1499 (74.8%) were genotyped as subspecies fastidiosa and 491 (24.5%) as subspecies multiplex. Among cloned subspecies fastidiosa sequences, 95.4% had SNP barcodes identical to the corresponding gene present in subspecies fastidiosa strains cultured from Pierce’s disease-affected vines in the same region sampled in 2016 and 2017. Presence of SNP barcodes representing both subspecies in one or more cloned genes was commonly observed within individual GWSS. This observation indicates that populations of X. fastidiosa in some insects consists of two subspecies or of two genotypes of one subspecies in which a proportion of the population was derived from a lineage with a history of horizontal gene transfer and homologous recombination. These conclusions suggest that: 1) individual GWSS may visit multiple host species (inoculum sources); 2) sequential pathogen acquisition events can lead to co-colonization of GWSS; 3) competitive exclusion of X. fastidiosa in the foregut is weak or not operating; and 4) the vector foregut is a potential arena for exchange of genetic material among sympatric X. fastidiosa subspecies.

Keywords

Pierce’s disease Xylella fastidiosa Mixed populations Subspecies fastidiosa Subspecies multiplex 

Notes

Acknowledgments

We thank Robert Leija, Sandra Navarro, Brandon Ortega, Sean Uchima and Kunbo Zhang for technical support. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not constitute endorsement by the U. S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Funding

This project was supported by funds received from the Consolidated Central Valley Table Grape Pest and Disease Control District and USDA-ARS appropriated project 2034–22000-012-00D.

Compliance with ethical standards

This research article is not submitted elsewhere for publication and complies with the Ethical Rules applicable for this journal.

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and/or animals

This article does not contain any studies with human participants or vertebrate animals.

Informed consent

All authors have approved the manuscript and agree to submission to European Journal of Plant Pathology.

References

  1. Almeida, R. P. P., De La Fuente, L., Koebnik, R., Lopes, J. R. S., Parnell, S., & Scherm, H. (2019). Addressing the new global threat of Xylella fastidiosa. Phytopathology, 109, 172–174.CrossRefGoogle Scholar
  2. Almeida, R. P. P., & Nunney, L. (2015). How do plant diseases caused by Xylella fastidiosa emerge? Plant Disease, 99, 1457–1467.CrossRefGoogle Scholar
  3. Almeida, R. P. P., & Purcell, A. H. (2003). Biological traits of Xylella fastidiosa strains from grapes and almonds. Applied and Environmental Microbiology, 69, 7447–7452.CrossRefGoogle Scholar
  4. Blua, M. J., Phillips, P. A., & Redak, R. A. (1999). A new sharpshooter threatens both crops and ornamentals. California Agriculture, 53, 22–25.CrossRefGoogle Scholar
  5. Burbank, L. P., & Ortega, B. C. (2018). Novel amplification targets for rapid detection and differentiation of Xylella fastidiosa subspecies fastidiosa and multiplex in plant and insect tissues. Journal of Microbiological Methods, 155, 8–18.CrossRefGoogle Scholar
  6. Burbank, L. P., & Van Horn, C. R. (2017). Conjugative plasmid transfer in Xylella fastidiosa is dependent on tra and trb operon functions. Journal of Bacteriology, 199, e00388–e00317.CrossRefGoogle Scholar
  7. Chen, J., Zheng, Z., Wu, F., Deng, X., Burbank, L. P., & Stenger, D. C. (2016). Draft genome sequence of Xylella fastidiosa subsp. fastidiosa strain Stag’s Leap. Genome Announcements, e00240–e00216.Google Scholar
  8. Chen, J., Xie, G., Han, S., Chertkov, O., Sims, D., & Civerolo, E. L. (2010). Whole genome sequences of two Xylella fastidiosa strains (M12 and M23) causing almond leaf scorch in California. Journal of Bacteriology, 192, 4534.CrossRefGoogle Scholar
  9. Costa, H. S., Guzman, A., Hernandez-Martinez, R., Gispert, C., & Cooksey, D. A. (2006). Detection and differentiation of Xylella fastidiosa strains acquired and retained by glassy-winged sharpshooters (Hemiptera: Cicadellidae) using a mixture of strain-specific primer sets. Journal of Economic Entomology, 99, 1058–1064.CrossRefGoogle Scholar
  10. Cruaud, A., Gonzalez, A.-A., Godefroid, M., Nidelet, S., Streito, J.-C., Thuillier, J.-M., Rossi, J.-P., Santoni, S., & Rasplus, J.-Y. (2018). Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: A case study in Corsica. Scientific Reports, 8, 15628.CrossRefGoogle Scholar
  11. Davis, M. J., French, W. J., & Schaad, N. W. (1981). Axenic culture of the bacteria associated with phony disease of peach and plum leaf scald. Current Microbiology, 6, 309–314.CrossRefGoogle Scholar
  12. Davis, M. J., Purcell, A. H., & Thompson, S. V. (1978). Pierce’s disease of grapevines: Isolation of the causal bacterium. Science, 199, 57–77.Google Scholar
  13. Davis, M. J., Thomson, S. V., & Purcell, A. H. (1980). Etiological role of a xylem-limited bacterium causing Pierce’s disease in almond leaf scorch. Phytopathology, 70, 472–475.CrossRefGoogle Scholar
  14. Hartung, J. S., Beretta, J., Brlansky, R. H., Spiso, J., & Lee, R. F. (1994). Citrus variegated chlorosis bacterium: Axenic culture, pathogenicity, and serological relationships with other strains of Xylella fastidiosa. Phytopathology, 84, 591–597.CrossRefGoogle Scholar
  15. Haviland, D. & Stone-Smith, B. (2016). Resurgence of glassy-winged sharpshooter and Pierce’s disease in Kern County, pp. 1-6. In San Joaquin Valley Table Grape Seminar, 17 February 2016, Visalia CA. California Table Grape Commission, Fresno, CA.Google Scholar
  16. Hendson, M., Purcell, A. H., Chen, D., Smart, C., Guilhabert, M., & Kirkpatrick, B. (2001). Genetic diversity of Pierce’s disease strains and other pathotypes of Xylella fastidiosa. Applied and Environmental Microbiology, 67, 895–903.CrossRefGoogle Scholar
  17. Hernandez-Martinez, R., de la Cerda, K. A., Costa, H. S., Cooksey, D. A., & Wong, F. P. (2007). Phylogenetic relationships of Xylella fastidiosa strains isolated from landscape ornamentals in Southern California. Phytopathology, 97, 857–864.CrossRefGoogle Scholar
  18. Hernandez-Martinez, R., Pinckard, T. R., Costa, H. S., Cooksey, D. A., & Wong, F. P. (2006). Discovery and characterization of Xylella fastidiosa strains in southern California causing mulberry leaf scorch. Plant Disease, 90, 1143–1149.CrossRefGoogle Scholar
  19. Krugner, R., Sisterson, M. S., Chen, J., Stenger, D. C., & Johnson, M. W. (2014). Evaluation of olive as a host of Xylella fastidiosa and associated sharpshooter vectors. Plant Disease, 98, 1186–1193.CrossRefGoogle Scholar
  20. Kung, S. H., & Almeida, R. P. P. (2011). Natural competence and recombination in the plant pathogen Xylella fastidiosa. Applied and Environmental Microbiology, 77, 5278–5284.CrossRefGoogle Scholar
  21. Marcelletti, S., & Scortichini, M. (2016). Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species. Archives of Microbiology, 198, 803–812.CrossRefGoogle Scholar
  22. Nunney, L., Azad, H., & Stouthamer, R. (2019). An experimental test of the host-plant range of nonrecombinant strains of north American Xylella fastidiosa subsp. multiplex. Phytopathology, 109, 294–300.CrossRefGoogle Scholar
  23. Nunney, L., Schuenzel, E. L., Scally, M., Bromley, R. B., & Stouthamer, R. (2014). Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with host shift to mulberry. Applied and Environmental Microbiology, 80, 3025–3033.CrossRefGoogle Scholar
  24. Nunney, L., Vickerman, D. B., Bromley, R. E., Russell, S. A., Hartman, J. R., Morano, L. D., & Stouthamer, R. (2013). Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States. Applied and Environmental Microbiology, 79, 2189–2200.CrossRefGoogle Scholar
  25. Nunney, L., Yuan, X., Bromley, R., Hartung, J., Montero-Astúa, M., Moreira, L., Ortiz, B., & Stouthamer, R. (2010). Population genomic analysis of a bacterial plant pathogen: Novel insight onto the origin of Pierce’s disease of grapevine in the U.S. PLoS One, 5, e15488.CrossRefGoogle Scholar
  26. Park, Y. -L., Perring, T. M., Krell, R. K., Hashim-Buckey, J. M., & Hill, B. L. (2011). Spatial distribution of Pierce’s disease related to incidence, vineyard characteristics, and surrounding land uses. American Journal of Enology and Viticulture, 62, 229–238.Google Scholar
  27. Perring, T. M., Farrar, C. A., & Blua, M. J. (2001). Proximity to citrus influences Pierce’s disease in Temecula Valley vineyards. California Agriculture, 55, 13–18.CrossRefGoogle Scholar
  28. Purcell, A. H., Saunders, S. R., Hendson, M., Grebus, M. E., & Henry, M. J. (1999). Causal role of Xylella fastidiosa in oleander leaf scorch disease. Phytopathology, 89, 53–58.CrossRefGoogle Scholar
  29. Rapicavoli, J. N., Kinsinger, N., Perring, T. M., backus, E. A., Shugart, H. J., Walker, S., & Roper, M. C. (2015). O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa. Applied and Environmental Microbiology, 81, 8145–8153.CrossRefGoogle Scholar
  30. Retchless, A., Labroussaa, F., Shapiro, L., Stenger, D. C., Lindow, S. E., & Almeida, R. P. P. (2014). Genomic insights into Xylella fastidiosa interactions with plant and insect hosts. In D. C. Gross, A. Lichens-Park, & C. Kole (Eds.), Genomics of plant-associated Bacteria (pp. 177–202). Berlin: Springer-Verlag.Google Scholar
  31. Saponari, M., Boscia, D., Altamura, G., Loconsole, G., Zicca, S., D’Attoma, G., Morelli, M., Palmisano, F., Saponari, A., Tavano, D., Savino, V. N., Dongiovanni, C., & Martelli, G. P. (2017). Isolation and pathogencity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy. Scientific Reports, 7, 17723.CrossRefGoogle Scholar
  32. Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D., & Saldarelli, P. (2019). Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology, 109, 175–186.CrossRefGoogle Scholar
  33. Scally, M., Schuenzel, E. L., Stouthamer, R., & Nunney, L. (2005). Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity. Applied and Environmental Microbiology, 71, 8491–8499.CrossRefGoogle Scholar
  34. Sicard, A., Zeilinger, A. R., Vanhove, M., Schartel, T. E., Beal, D. J., Daugherty, M. P., & Almeida, R. P. P. (2018). Xylella fastidiosa: Insights into an emerging plant pathogen. Annual Review of Plant Pathology, 56, 181–202.Google Scholar
  35. Simpson, A. J., Reinach, F. C., Arruda, P., Abreu, F. A., Acencio, M., Alvarenga, R., Alves, L. M., Araya, J. E., Baia, G. S., Baptista, C. S., Barros, M. H., Bonaccorsi, E. D., Bordin, S., Bove, J. M., Briones, M. R., Bueno, M. R., Camargo, A. A., Camargo, L. E., Carraro, D. M., Carrer, H., Colauto, N. B., Colombo, C., Costa, F. F., Costa, M. C., Costa-Neto, C. M., Coutinho, L. L., Cristofani, M., Dias-Neto, E., Docena, C., El- Dorry, H., Facincani, A. P., Ferreira, A. J., Ferreira, V. C., Ferro, J. A., Fraga, J. S., Franca, S. C., Franco, M. C., Frohme, M., Furlan, L. R., Garnier, M., Goldman, G. H., Goldman, M. H., Gomes, S. L., Gruber, A., Ho, P. L., Hoheisel, J. D., Junqueira, M. L., Kemper, E. L., Kitajima, J. P., Krieger, J. E., Kuramae, E. E., Laigret, F., Lambais, M. R., Leite, L. C., Lemos, E. G., Lemos, M. V., Lopes, S. A., Lopes, C. R., Machado, J. A., Machado, M. A., Madeira, A. M., Madeira, H. M., Marino, C. L., Marques, M. V., Martins, E. A., Martins, E. M., Matsukuma, A. Y., Menck, C. F., Miracca, E. C., Miyaki, C. Y., Monteriro-Vitorello, C. B., Moon, D. H., Nagai, M. A., Nascimento, A. L., Netto, L. E., Nhani, A., Jr Nobrega, F. G., Nunes, L. R., Oliveira, M. A., de Oliveira, M. C., de Oliveira, R. C., Palmieri, D. A., Paris, A., Peixoto, B. R., Pereira, G. A., Pereira, H. A., Jr Pesquero, J. B., Quaggio, R. B., Roberto, P. G., Rodrigues, V., Rosa, d. M., de Rosa, A. J., VE Jr de Sa, R. G., Santelli, R. V., Sawasaki, H. E., da Silva, A. C., da Silva, A. M., da Silva, F. R., da Silva, W. A., Jr., da Silveira, J. F., Silvestri, M. L., Siqueira, W. J., de Souza, A. A., de Souza, A. P., Terenzi, M. F., Truffi, D., Tsai, S. M., Tsuhako, M. H., Vallada, H., Van Sluys, M. A., Verjovski-Almeida, S., Vettore, A. L., Zago, M. A., Zatz, M., Meidanis, J., & Setubal, J. C. (2000). The genome sequence of the plant pathogen Xylella fastidiosa. Nature, 406, 151–157.CrossRefGoogle Scholar
  36. Sisterson, M., Burbank, L. P., Krugner, R., Haviland, D., & Stenger, D. (2018). Epidemiology of Pierce’s disease in the general Beale area of Kern County, pp. 139. In Proceedings of the Pierce’s disease research symposium, 17–19 December (p. 2018). Sacramento: San Diego, CA. California Department of Food and Agriculture.Google Scholar
  37. Sisterson, M. S., Yacoub, R., Montez, G., Grafton-Cardwell, E. E., & Groves, R. L. (2008). Distribution and management of citrus in California: Implications for management of glassy-winged sharpshooter. Journal of Economic Entomology, 101, 1041–1050.CrossRefGoogle Scholar
  38. Sorensen, J. T., & Gill, R. J. (1996). A range extension of Homalodisca coagulata (say) (Hemiptera: Clypeorryncha: Cicadellidae) to southern California. Pan-Pacific Entomology, 72, 160–161.Google Scholar
  39. Stenger, D. C., Lee, M. W., Rogers, E. E., & Chen, J. (2010a). Plasmids of Xylella fastidiosa mulberry-infecting strains share extensive sequence identity and gene complement with pVEIS01 from the earthworm symbiont Verminephrobacter eiseniae. Physiological and Molecular Plant Pathology, 74, 238–245.CrossRefGoogle Scholar
  40. Stenger, D. C., Sisterson, M. S., & French, R. (2010b). Population genetics of Homalodisca vitripennis reovirus validates timing and limited introduction to California of its invasive insect host, the glassy-winged sharpshooter. Virology, 407, 53–59.CrossRefGoogle Scholar
  41. Toscano, N. C., Hix, R., & Gispert, C. (2004). Riverside County glassy-winged sharpshooter area-wide management program in the Coachella and Temecula valleys, pp. 375-377. In Proceedings of the Pierce’s disease research symposium, 7–10 December (p. 2004). Sacramento, CA: San Diego, CA. California Department of Food and Agriculture.Google Scholar
  42. Van Sluys, M. A. , de Oliveira, M. C. , Monteiro-Vitorello, C. B. , Miyaki, C. Y., Furlan, L. R., Camargo, L. E. A., da Silva, A. C. R., Moon, D. H., Takita, M. A., Lemos, E. G. M., Machado, M. A., Ferro, M. I. T., da Silva, F. R., Goldman, M. H. S., Goldman, G. H., Lemos, M. V. F., El-Dorry, H., Tsai, S. M., Carrer, H., Carraro, D. M., de Oliveira, R. C., Nunes, L. R., Siqueira, W. J., Coutinho, L. L., Kimura, E. T., Ferro, E. S., Harakava, R., Kuramae, E. E., Marino, C. L., Giglioti, E., Abreu, I. L., Alves, L. M. C., do Amaral, A. M., Baia, G. S., Blanco, S. R., Brito, M. S., Cannavan, F. S., Celestino, A. V., da Cunha, A. F., Fenille, R. C., Ferro, J. A, Formighieri, E. F., Kishi, L. T., Leoni, S. G., Oliveira, A. R., Rosa Jr., V. E., Sassaki, F. T., Sena, J. A. D., de Souza, A. A., Truffi, D., Tsukumo, F., Yanai, G. M., Zaros, L. G., Civerolo, E. L., Simpson, A. J. G., Almeida Jr., N. F., Setubal, J. C., & Kitajima, J. P. (2003). Comparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa. Journal of Bacteriology 185, 1018–1026.Google Scholar
  43. Wells, J. M., Raju, B. C., Hung, H.-Y., Weisburg, W. G., Mandelco-Paul, L., & Brenner, D. J. (1987). Xylella fastidiosa gen. Nov., sp. Nov: Gram negative, xylem-limited, fastidious bacteria related to Xanthomonas spp. International Journal of Systematics and Evolutionary Microbiology, 37, 136–143.Google Scholar
  44. Wendel, L., Ciomperlik, M., Bartels, D., Lauziere, I., & Stone-Smith, B. (2002). The area-wide pest management of glassy-winged sharpshooter in Kern County, pp 165. In Proceedings of the Pierce’s disease research symposium, 15–18 December (p. 2002). Sacramento, CA: San Diego, CA. California Department of Food and Agriculture.Google Scholar
  45. Yuan, X., Morano, L., Bromley, R., Spring-Pearson, S., Stouthamer, R., & Nunney, L. (2010). Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander leaf scorch in the United States. Phytopathology, 100, 601–611.CrossRefGoogle Scholar

Copyright information

© US Government 2019

Authors and Affiliations

  • Drake C. Stenger
    • 1
    Email author
  • Lindsey P. Burbank
    • 1
  • Rodrigo Krugner
    • 1
  • Mark S. Sisterson
    • 1
  1. 1.USDA-Agricultural Research ServiceSan Joaquin Valley Agricultural Sciences CenterParlierUSA

Personalised recommendations