Advertisement

Grapevine virus L: a novel vitivirus in grapevine

  • Humberto DebatEmail author
  • Diego Zavallo
  • Reid Soltero Brisbane
  • Darko Vončina
  • Rodrigo P. P. Almeida
  • Arnaud G. Blouin
  • Maher Al Rwahnih
  • Sebastian Gomez-TalquencaEmail author
  • Sebastian Asurmendi
Article
  • 117 Downloads

Abstract

Vitiviruses are ssRNA(+) viruses in the family Betaflexiviridae (subfamily Trivirinae). There are currently 10 ICTV recognized virus species in the genus; nevertheless, the extended use of NGS technologies is rapidly expanding their diversity and official recognition of six more have been proposed recently. Here, we present the characterization of a novel virus from grapevine, which fits the genomic architecture and evolutionary constraints to be classified within the Vitivirus genus. The detected virus sequence is 7607 nt long, including a typical genome organization of ORFs encoding a replicase (RP), a 22 kDa protein, a movement protein, a coat protein (CP) and a nucleic acid binding protein. Phylogenetic analyses based on the predicted RP and CP proteins unequivocally place the new virus within the Vitivirus genus. Multiple independent RNAseq data confirmed the presence of the detected virus in berries at diverse developmental stages. Additionally, we detected, confirmed, and assembled virus sequences from grapevine samples of distinct cultivars from America, Europe, Asia and Oceania, sharing 74.4%–97.8% nt identity, suggesting that the identified virus is widely distributed and diverse. We propose the name grapevine virus L (GVL) to the detected Vitivirus.

Keywords

Vitivirus Grapevine Virus discovery Betaflexiviridae 

Notes

Acknowledgements

This work was supported by project PE1131022 of the Instituto Nacional de Tecnología Agropecuaria (INTA) and by ANPCyT PICT 2015-1532 and PICT 2016-0429. The funders had no role in study design and analysis, decision to publish, or preparation of the manuscript. The research from New Zealand is funded by New Zealand Winegrowers Inc. and The Ministry of Business, Innovation & Employment. Many thanks to Alfredo Diaz Lara, Department of Plant Pathology, University of California, Davis, CA for his technical assistance.

Author contributions

HD, DZ, SGT and SA designed the study. RSB, DV, RPPA, AGB and MAR, performed experiments, generated and analyzed data. HD integrated the data together with SA. HD and DZ wrote the initial draft of the manuscript and SGT, AGB, RSB, DV, RPPA, MAR and SA revised the manuscript. All authors approved the final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Therefore, informed consent was not required for this work.

Supplementary material

10658_2019_1727_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)
10658_2019_1727_MOESM2_ESM.docx (18 kb)
ESM 2 (DOCX 17 kb)
10658_2019_1727_MOESM3_ESM.docx (14 kb)
ESM 3 (DOCX 14 kb)
10658_2019_1727_Fig3_ESM.png (1.1 mb)
ESM 4

(PNG 1116 kb)

10658_2019_1727_MOESM4_ESM.tif (4 mb)
High Resolution (TIF 4096 kb)
10658_2019_1727_Fig4_ESM.png (1.8 mb)
ESM 5

(PNG 1837 kb)

10658_2019_1727_MOESM5_ESM.tif (6.8 mb)
High Resolution (TIF 6975 kb)
10658_2019_1727_Fig5_ESM.png (3 mb)
ESM 6

(PNG 3079 kb)

10658_2019_1727_MOESM6_ESM.tif (3.5 mb)
High Resolution (TIF 3535 kb)
10658_2019_1727_Fig6_ESM.png (611 kb)
ESM 7

(PNG 611 kb)

10658_2019_1727_MOESM7_ESM.tif (4.2 mb)
High Resolution (TIF 4308 kb)
10658_2019_1727_Fig7_ESM.png (558 kb)
ESM 8

(PNG 558 kb)

10658_2019_1727_MOESM8_ESM.tif (2.3 mb)
High Resolution (TIF 2369 kb)
10658_2019_1727_Fig8_ESM.png (640 kb)
ESM 9

(PNG 639 kb)

10658_2019_1727_MOESM9_ESM.tif (2.5 mb)
High Resolution (TIF 2533 kb)
10658_2019_1727_Fig9_ESM.png (550 kb)
ESM 10

(PNG 550 kb)

10658_2019_1727_MOESM10_ESM.tif (2.6 mb)
High Resolution (TIF 2664 kb)

References

  1. Adams, M. J., Candresse, T., Hammond, J., Kreuze, J. F., Martelli, G. P., Namba, S., et al. (2012). Family Betaflexiviridae. In A. M. Q. King, M. J. Adams, E. B. Carstens, & E. J. Lefkowitz (Eds.), Virus taxonomy – Ninth report on the international committee on taxonomy of viruses (pp. 920–941). London: Elsevier Academic Press.Google Scholar
  2. Al Rwahnih, M., Daubert, S., Islas, C., Golino, D., & Rowhani, A. (2014). Characterization of a fifth vitivirus in grapevine. Journal of Plant Pathology, 96, 219–222.Google Scholar
  3. Al Rwahnih, M., Daubert, S., Golino, D., Islas, C., & Rowhani, A. (2015). Comparison of next-generation sequencing versus biological indexing for the optimal detection of viral pathogens in grapevine. Phytopathology, 105, 758–763.CrossRefGoogle Scholar
  4. Al Rwahnih, M., Rowhani, A., Westrick, N., Stevens, K., Diaz-Lara, A., Trouillas, F. P., et al. (2018). Discovery of viruses and virus-like pathogens in pistachio using high-throughput sequencing. Plant Disease, 102, 1419–1425.CrossRefGoogle Scholar
  5. Alabi, O. J., Poojari, S., Sarver, K., Martin, R. R., & Naidu, R. A. (2013). Complete genome sequence analysis of an American isolate of grapevine virus E. Virus Genes, 46, 563–566.CrossRefGoogle Scholar
  6. Blouin, A. G., Chavan, R. R., Pearson, M. N., MacDiarmid, R. M., & Cohen, D. (2012). Detection and characterisation of two novel vitiviruses infecting Actinidia. Archives of Virology, 157, 713–722.CrossRefGoogle Scholar
  7. Blouin, A. G., Ross, H. A., Hobson-Peters, J., O'Brien, C. A., Warren, B., & MacDiarmid, R. (2016). A new virus discovered by immunocapture of double-stranded RNA, a rapid method for virus enrichment in metagenomic studies. Molecular Ecology Resources, 16, 1255–1263.CrossRefGoogle Scholar
  8. Blouin, A. G., Chooi, K. M., Warren, B., Napier, K. R., Barrero, R. A., & MacDiarmid, R. M. (2018a). Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand. Archives of Virology, 163, 1371–1374.CrossRefGoogle Scholar
  9. Blouin, A. G., Keenan, S., Napier, K. R., Barrero, R. A., & MacDiarmid, R. M. (2018b). Identification of a novel vitivirus from grapevines in New Zealand. Archives of Virology, 163, 281–284.CrossRefGoogle Scholar
  10. Candresse, T., Theil, S., Faure, C., & Marais, A. (2018). Determination of the complete genomic sequence of grapevine virus H, a novel vitivirus infecting grapevine. Archives of Virology, 163, 277–280.CrossRefGoogle Scholar
  11. Chen, W. K., Bai, X. J., Cao, M. M., Cheng, G., Cao, X. J., Guo, R. R., et al. (2017). Dissecting the variations of ripening progression and flavonoid metabolism in grape berries grown under double cropping system. Frontiers in Plant Science, 8, 1912.CrossRefGoogle Scholar
  12. Diaz-Lara, A., Golino, D., & Al Rwahnih, M. (2018). Genomic characterization of grapevine virus J, a novel virus identified in grapevine. Archives of Virology, 163, 1965–1967.CrossRefGoogle Scholar
  13. Du Preez, J., Stephan, D., Mawassi, M., & Burger, J. T. (2011). The grapevine-infecting vitiviruses, with particular reference to grapevine virus a. Archives of Virology, 156, 1495–1503.CrossRefGoogle Scholar
  14. Flores, R., Ruiz-Ruiz, S., & Soler, N. (2013). Citrus tristeza virus p23: A unique protein mediating key virus–host interactions. Frontiers in Microbiology, 4, 98.Google Scholar
  15. Goszczynski, D. E. (2015). Brief report of the construction of infectious DNA clones of south African genetic variants of grapevine virus a and grapevine virus B. SpringerPlus, 4, 739.CrossRefGoogle Scholar
  16. Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., et al. (2013). De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nature Protocols, 8, 1494–1512.CrossRefGoogle Scholar
  17. Hassan, M., Shahid, M. S., & Tzanetakis, I. E. (2018). Molecular characterization and detection of a novel vitivirus infecting blackberry. Archives of Virology, 163, 2889–2893.CrossRefGoogle Scholar
  18. Jo, Y., Song, M. K., Choi, H., Park, J. S., Lee, J. W., Lian, S., et al. (2017). Genome sequence of grapevine virus K, a novel vitivirus infecting grapevine. Genome Announcements, 5, e00994–e00917.Google Scholar
  19. Li, H., Havens, W. M., Nibert, M. L., & Ghabrial, S. A. (2011). RNA sequence determinants of a coupled termination-reinitiation strategy for downstream open reading frame translation in Helminthosporium victoriae virus 190S and other victoriviruses (family Totiviridae). Journal of Virology, 85, 7343–7352.CrossRefGoogle Scholar
  20. Minafra, A., Mawassi, M., Goszczynski, D., & Saldarelli, P. (2017). Grapevine Vitiviruses. In: Grapevine Viruses. Meng B, Martelli GP, Golino DA, Fuchs M. eds. Springer International Publishing AG.Google Scholar
  21. Nakaune, R., Toda, S., Mochizuki, M., & Nakano, M. (2008). Identification and characterization of a new vitivirus from grapevine. Archives of Virology, 153, 1827–1832.CrossRefGoogle Scholar
  22. Oliveira, L. M., Orílio, A. F., Inoue-Nagata, A. K., Nagata, T., & Blawid, R. (2017). A novel vitivirus-like sequence found in Arracacia xanthorrhiza plants by high throughput sequencing. Archives of Virology, 162, 2141–2144.CrossRefGoogle Scholar
  23. Rowhani, A., Daubert, S., Arnold, K., Al Rwahnih, M., Klaassen, V., Golino, D., & Uyemoto, J. K. (2018). Synergy between grapevine vitiviruses and grapevine leafroll viruses. European Journal of Plant Pathology, 151, 919–925.CrossRefGoogle Scholar
  24. Tzanetakis, I. E., Postman, J. D., & Martin, R. R. (2007). Identification, detection and transmission of a new vitivirus from Mentha. Archives of Virology, 152, 2027–2033.CrossRefGoogle Scholar
  25. Vončina, D., & Almeida, R. P. (2018). Screening of some Croatian autochthonous grapevine varieties reveals a multitude of viruses, including novel ones. Archives of Virology, 163, 2239–2243.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA)CórdobaArgentina
  2. 2.Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (IB-CICVyA-INTA)Buenos AiresArgentina
  3. 3.Foundation Plant ServicesDavisUSA
  4. 4.Department of Plant Pathology, Faculty of AgricultureUniversity of ZagrebZagrebCroatia
  5. 5.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA
  6. 6.The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
  7. 7.Department of Plant PathologyUniversity of CaliforniaDavisUSA
  8. 8.Estación Experimental Agropecuaria MendozaInstituto Nacional de Tecnología Agropecuaria (EEA-Mendoza-INTA)MendozaArgentina
  9. 9.CONICETBuenos AiresArgentina

Personalised recommendations