Advertisement

European Journal of Plant Pathology

, Volume 154, Issue 4, pp 1051–1058 | Cite as

Response of PIWI grapevine cultivars to downy mildew in highland region of southern Brazil

  • Jean A. Zanghelini
  • Amauri Bogo
  • Lirio L. Dal Vesco
  • Beatriz R. Gomes
  • Cristian V. Mecabô
  • Claudemar H. Herpich
  • Leocir J. WelterEmail author
Article

Abstract

Downy mildew (DM) caused by Plasmopara viticola is a major grapevine disease in southern Brazil. Control of DM requires frequent fungicide treatments or the use of resistant cultivars. The pyramiding of previously identified resistance loci allows the selection of genotypes with combined resistance loci in order to build up sustainable resistance. The objective of this study was to evaluate the resistance response of PIWI cultivars Felicia, Brönner, and Calardis Blanc, containing Rpv3.1, Rpv10, and Rpv3.1 + Rpv3.2 loci, respectively, and two advanced breeding selections (ABS) containing the Rpv1 + Rpv3.1 pyramided, to the development of DM temporal dynamics. The experiment was conducted at an experimental vineyard in the highland of southern Brazil, during the 2016/2017 and 2017/2018 growing seasons. The genotype UFSC-2012-1-24 without resistance loci was used as susceptible control. DM incidence and severity were assessed biweekly from the first symptoms appearance until harvest. The cultivars and ABS were compared based on the following DM epidemiological parameters: a) beginning of symptoms appearance (BSA); b) maximum disease incidence and severity (Imax, Smax); c) time to reach maximum disease incidence/severity (TRMDI and TRMDS); and d) areas under incidence and severity disease progress curves (AUIDPC and AUSDPC). In general, there were significant differences in the estimated parameters depending on the genotype. The principal epidemiological variables that differentiated the PIWI cultivars were Smax and AUSDPC. The PIWI cultivars showed significantly lower Smax and AUSDPC of DM in comparison to the susceptible control in both 2016/2017 and 2017/2018 growing seasons. There were also significant differences between the cultivars for AUIDPC and AUSDPC in both growing seasons. Felicia cultivar showed the highest AUIDPC and AUSDPC in the 2016/2017 growing season. Surprisingly, in the growing seasons 2017/2018, Calardis Blanc displayed an increase in disease incidence and severity, showing a similar AUIDPC and AUSDPC to Felicia cultivar. In general, Bronner cultivar was the most resistant to DM. The ABS showed the lowest value of Imax, Smax, AUIDPC and AUSDPC, suggesting the effectiveness of the Rpv1 + Rpv3.1 pyramiding. The PIWI cultivars showed partial resistance to DM and are potential options for reducing fungicide use. The results showed that the pyramiding of resistance loci is fundamental to increase the genetic resistance to DM.

Keywords

Vitis vinifera Plasmopara viticola Epidemiological variables Resistance to fungal diseases Gene pyramiding Genetic improvement 

Notes

Acknowledgments

This research was financially supported by CNPq (The National Council for Scientific and Technological Development), FAPESC (Santa Catarina State Foundation for Scientific and Technological Development), Sindivinho). We are thankfull for the scientific collaboration with the institutes Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Germany; Edmund Mach Foundation, San Michele all’Adige, Trento, Italy; Santa Catarina State Agricultural Research and Rural Extension Agency (EPAGRI).

Funding

This study was funded by CNPq (The National Council for Scientific and Technological Development), FAPESC (Santa Catarina State Foundation for Scientific and Technological Development).

Compliance with ethical statement

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable to this study, did not work with humans or animals.

Informed consent

Not applicable.

References

  1. Alonso-Villaverde, V., Viret, O., & Gindro, K. (2011). Downy mildew: Is resistance linked to inoculum concentration? Vitis, 50, 127–129.Google Scholar
  2. Austin, C. N., & Wilcox, W. F. (2011). Effects of fruit zone leaf removal, training systems, and irrigation on the development of grapevine powdery mildew. American Journal of Enology and Viticulture, 62, 193–198.CrossRefGoogle Scholar
  3. Bellin, D., Peressotti, E., Merdinoglu, D., Wiedemann-Merdinoglu, S., AdamBlondon, A. F., & Cipriani, G. (2009). Resistance to Plasmopara viticola in grapevine Bianca is controlled by a major dominant gene causing localised necrosis at the infection site. Theoretical and Applied Genetics, 120, 163–176.CrossRefPubMedGoogle Scholar
  4. Boso, S., Alonso-Villaverde, A., Gago, P., Santiago, J. L., & Martínez, M. C. (2011). Susceptibility of 44 grapevine (Vitis vinifera L.) varieties to downy mildew in the field. Australian Journal of Grape and Wine Research, 17, 394–400.CrossRefGoogle Scholar
  5. Buffara, C. R. C., Angelotti, F., Vieira, F. A., Bogo, A., Tessmann, D. J., & De Bem, B. P. (2014). Elaboration and validation of a diagrammatic scale to assess downy mildew severity in grapevine. Ciência Rural, 44, 1384–1391.CrossRefGoogle Scholar
  6. Caffi, T., Legler, S. E., González-Domínguez, E., & Rossi, V. (2016). Effect of temperature and wetness duration on infection by Plasmopara viticola and on post-inoculation efficacy of copper. European Journal of Plant Patholology, 144, 737–750.CrossRefGoogle Scholar
  7. Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley.Google Scholar
  8. De Bem, B. P., Bogo, A., Everhart, S., Casa, R. T., Gonçalves, M. J., Marcon, J. L., & da Cunha, I. C. (2015). Effect of Y-trellis and vertical shoot positioning training systems on downy mildew and botrytis bunch rot of grape in highlands of southern Brazil. Scientia Horticulturae, 185, 162–166.CrossRefGoogle Scholar
  9. De Bem, B. P., Bogo, A., Everhart, S., Casa, R. T., Gonçalves, M. J., Marcon, J. L., Rufato, L., da Silva, F. N., Allebrandt, R., & da Cunha, I. C. (2016). Effect of four training systems on the temporal dynamics of downy mildew in two grapevine cultivars in southern Brazil. Tropical Plant Pathology, 41, 370–379.CrossRefGoogle Scholar
  10. Delmas, C. E., Fabre, F., Jolivet, J., Mazet, I., Richart, D., Cervera, S., Delière, L., & Delmotte, F. (2016). Adaptation of a plant pathogen to partial host resistance: Selection for greater aggressiveness in grapevine downy mildew. Evolutionary Applications, 9, 709–725.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Di Gaspero, G., Copetti, D., Coleman, C., Castellarin, S. D., Eibach, R., & Kozma, P. (2012). Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theoretical and Applied Genetics, 124, 277–286.CrossRefPubMedGoogle Scholar
  12. Eibach, R., Zyprian, E., Welter, L. J., & Töpfer, R. (2007). The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis, 46, 120–124.Google Scholar
  13. Fischer, B. M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K. J., & Töpfer, R. (2004). Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theoretical and Applied Genetics, 108, 501–515.CrossRefPubMedGoogle Scholar
  14. Jeager, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434–446.CrossRefGoogle Scholar
  15. Kennelly, M. M., Gadoury, D. M., Wilcox, H. F., Magarey, P. A., & Seem, R. C. (2005). Seasonal development of ontogenic resistance to downy mildew in grape berries and rachises. Phytopathology, 95, 1445–1452.CrossRefPubMedGoogle Scholar
  16. Merdinoglu, D., Wiedemann-Merdinoglu, S., Coste, P., Dumas, V., Haetty, S., Butterlin, G., & Greif, C. (2003). Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Horticulturae, (603), 451–456.Google Scholar
  17. Nascimento-Gavioli, M. C. A., Agapito-Tenfen, S. Z., Nodari, R. O., Welter, L., Sanchez Mora, F. D., Saifert, L., da Silva, A. L., & Guerra, M. P. (2017). Proteome of Plasmopara viticola-infected Vitis vinifera provides insights into grapevine Rpv1/Rpv3 pyramided resistance to downy mildew. Journal of Proteomics, 151, 264–274.CrossRefPubMedGoogle Scholar
  18. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 633–1644.CrossRefGoogle Scholar
  19. Saifert, L., Mora, F. D. S., Assumpcao, W. T., Giacometti, R., Novak, E. I., Zanghelini, J. A., Dal Vesco, L. L., Nodari, R. O., Eibach, R., & Welter, L. J. (2018). Marker-assisted pyramiding of resistance loci to grape downy mildew. Pesquisa Agropecuária Brasileira, 53, 602–610.CrossRefGoogle Scholar
  20. Sánchez-Mora, F. D., Saifert, L., Zanghelini, J., Assumpção, W. T., Guginski-Piva, C. A., Giacomet, R., Novak, E. I., Klabunde, G. H., Eibach, R., Vesco, L. D., Nodari, R. O., & Welter, L. J. (2017). Behavior of grape breeding lines with distinct resistance alleles to downy mildew (Plasmopara viticola). Crop Breeding and Applied Biotechnology, 17, 141–149.CrossRefGoogle Scholar
  21. Schwander, F., Eibach, R., Fechter, I., Hausmann, L., Zyprian, E., & Töpfer, R. (2012). Rpv10: A new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theoretical and Applied Genetics, 124, 163–176.CrossRefPubMedGoogle Scholar
  22. Töpfer, R., Hausmann, L., Harst, M., Maul, E., Zyprian, E., & Eibach, R. (2011). New horizons for grapevine breeding. Fruit, Vegetable and Cereal Science and Biotechnology, 5, 79–100.Google Scholar
  23. Venuti, S. (2013). Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS One, 12, 8.Google Scholar
  24. Vezzulli, S., Vecchione, A., Stefanini, M., & Zulini, L. (2018). Downy mildew resistance evaluation in 28 grapevine hybrids promising for breeding programs in Trentino region (Italy). European Journal of Plant Pathology, 150, 485–495.CrossRefGoogle Scholar
  25. Welter, L. J., Göktürk-Baydar, N., Akkurt, M., Maul, E., Eibach, R., Töpfer, R., & Zyprian, E. M. (2007). Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Molecular Breeding, 20, 359–374.CrossRefGoogle Scholar
  26. Yu, Y., Zhang, Y., & Lu, J. (2012). The mode of host resistance to Plasmopara viticola infection of grapevines. Phytopathology, 102, 1094–1101.CrossRefPubMedGoogle Scholar
  27. Zyprian, E., Ochner, I., Schwander, F., Simon, S., Hausmann, L., Bonow-Rex, M., Moreno-Sanz, P., Grando, M. S., Wiedemann-Merdinoglu, S., Merdinoglu, D., Eibach, R., & Topfer, R. (2016). Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Molecular Genetics and Genomics, 291, 1573–1594.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Jean A. Zanghelini
    • 1
  • Amauri Bogo
    • 1
  • Lirio L. Dal Vesco
    • 2
  • Beatriz R. Gomes
    • 1
  • Cristian V. Mecabô
    • 2
  • Claudemar H. Herpich
    • 2
  • Leocir J. Welter
    • 2
    Email author
  1. 1.Crop Production Graduate ProgramSanta Catarina State University, UDESCLagesBrazil
  2. 2.Agriculture and Natural Ecossystems Graduate ProgramFederal University of Santa Catarina, UFSCCuritibanosBrazil

Personalised recommendations