Control of Phytophthora brown rot of lemons by pre- and postharvest applications of potassium phosphite

  • A. C. Ramallo
  • L. Cerioni
  • G. M. Olmedo
  • S. I. Volentini
  • J. Ramallo
  • V. A. RapisardaEmail author


Citrus Brown Rot (BR), caused by Phytophthora spp., provokes important economical losses mainly in periods of high rainfall. The management of this disease in Florida and Brazilian citrus areas, main orange growers worldwide, includes chemical control using phosphite salts. In Argentina, the world leader in lemon production, these compounds are registered only as fertilizers. In this work, the effect of potassium phosphite on different Phytophthora sp. cellular structures and the conditions to control lemon BR by it application at pre and post-harvest stages were evaluated. Phosphite inhibited in vitro the mycelial growth, the sporangia production, and the motility and germination of zoospores of a local isolate of Phytophthora citrophthora. In postharvest applications on artificially inoculated lemons, the phosphites exerted a moderate curative activity, reducing BR incidences ~25% in respect to controls. When this salt was applied a week before inoculation, BR incidences were 50–60% lower than those of controls, denoting a significant preventive activity. The application of phosphite with fungicides in commercial packingline prevented BR disease in fruit inoculated at 96 h post-treatment. In pre-harvest, two phosphite applications reduced incidences ~40–60% in lemons harvested and inoculated up to 75 d after treatment. Our data confer valuable technical information towards the use of phosphite salts against lemon BR, contributing to the pre- and postharvest management strategies of this disease.


Citrus Brown rot Phytophthora citrophthora Potassium phosphite 



We acknowledge Citrícola San Miguel SA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Técnica (ANPCyT), Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT), and Consejo Federal de Ciencia y Tecnología - Ministerio de Ciencia, Tecnología e Innovación Productiva (COFECYT-MINCYT).


  1. Adaskaveg, J. E., & Förster, H. (2014). Integrated postharvest strategies for management of Phytophthora brown rot of citrus in the United States. In D. Prusky & M. L. Gullino (Eds.), Post-harvest pathology, plant pathology in the 21 st century (pp. 123–131). Cham: Springer International Publishing.Google Scholar
  2. Adaskaveg, J. E., Hao, W., & Förster, H. (2015). Postharvest strategies for managing Phytophthora brown rot of citrus using potassium phosphite in combination with heat treatments. Plant Disease, 99, 1477–1482.CrossRefGoogle Scholar
  3. Brantner, J. R., & Windels, C. E. (1998). Variability in sensitivity to metalaxyl in vitro, pathogenicity, and control of Pythium spp. on sugar beet. Plant Disease, 82, 896–899.CrossRefGoogle Scholar
  4. Cerioni, L., Rapisarda, V. A., Doctor, J., Fikkert, S., Ruiz, T., Fassel, R., & Smilanick, J. L. (2013a). Use of phosphite salts in laboratory and semicommercial tests to control citrus postharvest decay. Plant Disease, 97, 201–212.CrossRefGoogle Scholar
  5. Cerioni, L., Sepulveda, M., Rubio-Ames, Z., Volentini, S. I., Rodriguez-Montelongo, L., Smilanick, J. L., Ramallo, J., & Rapisarda, V. A. (2013b). Control of lemon postharvest diseases by low-toxicity salts combined with hydrogen peroxide and heat. Postharvest Biology and Technology, 83, 17–21.CrossRefGoogle Scholar
  6. Daniel, R., & Guest, D. (2006). Defence responses induced by potassium phosphonate in Phytophthora palmivora challenged Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 67, 194–201.CrossRefGoogle Scholar
  7. Dixon, R. A., Achnine, L., Kota, P., Liu, C. J., Reddy, M. S. S., & Wang, L. (2002). The phenylpropanoid pathway and plant defence a genomics perspective. Molecular Plant Pathology, 3, 371–390.CrossRefGoogle Scholar
  8. Drenth, A., & Sendall, B. (2001). Practical guide to detection and identification of Phytophthora. CRC for Tropical Plant Protection, 1–39.Google Scholar
  9. Eckert, J. W., & Brown, G. E. (2000). Brown rot. In L. W. Timmer, S. M. Garnsey, & J. H. Graham (Eds.), Compendium of citrus diseases (2nd ed., p. 39). St. Paul: APS Press.Google Scholar
  10. Eckert, J. W., & Eaks, I. L. (1989). Postharvest disorders and diseases of citrus fruit. In W. Reuter, E. C. Calavan, & G. E. Carman (Eds.), The citrus industry (Vol. 5.9, pp. 179–260). Berkeley: University of California Press.Google Scholar
  11. Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: American Phytopathological society.Google Scholar
  12. Federcitrus (Federación Argentina de Citrus). (2017). La Actividad Citrícola Argentina - Año 2017. Accessed April 2018.
  13. Feichtenberger, E. (2001). Doenças incitadas por Phytophthora em citros. In E. D. M. N. Luz, K. Matsuoka, A. F. Santos, & J. L. Bezerra (Eds.), Doenças causadas por Phytophthora no Brasil (pp. 283–342). Campinas: Livraria Rural.Google Scholar
  14. Fenn, M. E., & Coffey, M. D. (1984). Studies on the in vitro and in vivo antifungal activity of fosetyl-Al and phosphorus acid. Phytopathology, 74, 606–611.CrossRefGoogle Scholar
  15. Graham, J. H. (2011). Phosphite for control of Phytophthora diseases in citrus: Model for management of Phytophthora species on forest trees? New Zealand Journal of Forestry Science, 41, 49–56.Google Scholar
  16. Graham, J. H., & Dewdney, M. M. (2014). Brown rot of fruit. In M. E. Rogers & M. M. Dewdney (Eds.), Florida citrus pest management guide (pp. 67–68). Lake Alfred: University of Florida IFAS.Google Scholar
  17. Graham, J. H. & Feichtenberger, E. (2015). Citrus Phytophthora diseases: management challenges and successes. Journal of Citrus Pathology, 2(1).
  18. Graham, J. H., & Menge, J. A. (2000). Phytophthora-induced diseases. In L. W. Timmer, S. M. Garnsey, & J. H. Graham (Eds.), Compendium of citrus diseases (pp. 12–13). St. Paul: APS Press.Google Scholar
  19. Graham, J.H., & Timmer, L.W. (2003). Phytophthora diseases of citrus. SL 127. University of Florida. Accessed April 2018.
  20. Grünwald, N. J., Martin, F. N., Larsen, M. M., Sullivan, C. M., Press, C. M., Coffey, M. D., Hansen, E. M., & Parke, J. L. (2011). A sequence-based Phytophthora identification tool. Plant Disease, 95, 337–342.CrossRefGoogle Scholar
  21. Guest, D., & Grant, B. R. (1991). The complex action of phosphonates as antifungal agents. Biological Reviews, 66, 159–187.CrossRefGoogle Scholar
  22. Jeffers, S. N., & Martin, S. B. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease, 70, 1038–1043.CrossRefGoogle Scholar
  23. King-Watson, E. D. (1988). Sensitivity monitoring methods for phenylamide fungicides. In C. J. Delp (Ed.), Fungicide resistance in North America (pp. 61–62). St. Paul: APS Press.Google Scholar
  24. Leymonie, J. P. (2007). Phosphites and phosphates: when distributors and growers alike could get confused! New Ag International, 9, 36–42.Google Scholar
  25. Martin, F. N., Tooley, P. W., & Blomquist, C. (2004). Molecular detection of Phytophthora ramorum, the causal agent of sudden oak death in California, and two additional species commonly recovered from diseased plant material. Phytopathology, 94, 621–631.CrossRefGoogle Scholar
  26. McDonald, A. E., Grant, B. R., & Plaxton, W. C. (2001). Phosphite (phosphorous acid): its relevance in the environment and agriculture, and influence on the plant phosphate starvation response. Journal of Plant Nutrition, 24, 1505–1519.CrossRefGoogle Scholar
  27. Mitchell, D. J., Kannwischer-Mitchell, M. E., & Zentmyer, G. A. (1986). Isolating, identifying and producing inoculum of Phytophthora spp. In K. D. Dickey (Ed.), Methods for evaluating pesticides for control of plant pathogens (pp. 63–66). St. Paul: APS Press.Google Scholar
  28. Möller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 20, 6115–6116.CrossRefGoogle Scholar
  29. Palacios, J. (2005). Origen de los Agrios. In: Citricultura (pp. 58–60). ISBN 987-43-8326-7. Talleres Gráficos Alfa Beta S.A., Bs. As., Argentina.Google Scholar
  30. Perez, V., Mamdouh, A. M., Huet, J. C., Pernollet, J. C., & Bompeix, G. (1995). Enhanced secretion of elicitins by Phytophthora fungi exposed to phosphonate. Cryptogamie Mycology, 16, 191–194.Google Scholar
  31. SENASA, 2009. Manual para el registro de fertilizantes, enmiendas, sustratos, acondicionadores, protectores y materias primas en la república argentina, anexo I.: Accessed February 2018.
  32. Smillie, R., Grant, B. R., & Guest, D. (1989). The mode of action of phosphite: Evidence for both direct and indirect modes of action on three Phytophthora spp. in plants. Phytopathology, 79, 921–926.CrossRefGoogle Scholar
  33. Smith, B. J., Shearer, B. L., & Sivasithamparam, K. (1997). Compartmentalization of Phytophthora cinnamomi in stems of highly susceptible Banksia brownii treated with phosphite. Mycologial Research, 101, 1101–1107.CrossRefGoogle Scholar
  34. Thao, H. T. B., & Yamakawa, T. (2009). Phosphite (phosphorous acid): Fungicide, fertilizer or bio-stimulator? Soil Science and Plant Nutrition, 55, 228–234.CrossRefGoogle Scholar
  35. USDA- United States Department of Agriculture, Foreign Agricultural Service. (2018). Citrus: World Markets and Trade. Accessed March 2018.
  36. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In N. Innis, D. Gelfand, J. Sninsky, & T. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic Press, Inc.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • A. C. Ramallo
    • 1
  • L. Cerioni
    • 1
  • G. M. Olmedo
    • 1
  • S. I. Volentini
    • 1
  • J. Ramallo
    • 2
  • V. A. Rapisarda
    • 1
    Email author
  1. 1.Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”, Facultad de Bioquímica, Química y FarmaciaSan Miguel de TucumánArgentina
  2. 2.Laboratorio de Desarrollo e InvestigaciónSA San MiguelSan Miguel de TucumánArgentina

Personalised recommendations