Advertisement

Genetic characterization of Moniliophthora perniciosa from Ecuador and in vitro sensitivity to compost tea

  • María Gabriela Maridueña-Zavala
  • Andrea Freire-Peñaherrera
  • Rodrigo Fernando Espinoza-Lozano
  • Mirian Villavicencio-Vasquez
  • Maria Jimenez-Feijoo
  • Juan Manuel Cevallos-CevallosEmail author
Article

Abstract

Moniliophthora perniciosa is the causal agent of the witches’ broom disease (WBD) in cacao but the morphological and molecular diversity of M. perniciosa in Ecuador—the top fine flavor cacao producer worldwide—are poorly understood and the pathogen’s sensitivity to compost teas is unknown. A total of 90 isolates of M. perniciosa were obtained from symptomatic samples of cocoa branches and pods collected from four cocoa-producing regions of Ecuador. Growth of each isolate was assed and fitted to a Gompertz model, and the molecular variability was evaluated by sequencing the ITS1, 5 .8s, and ITS2 rDNA regions as well as by inter-retrotransposon amplified polymorphism (IRAP), retrotransposon microsatellite amplified polymorphism (REMAP), and simple sequence repeats (SSR) analyses. Sensitivity of M. perniciosa to a compost tea was evaluated at concentrations of 0.5, 1, 1.5, 2, 2.75, and 3.5% in PDA. Results showed morphological and growth rate homogeneity across isolates. Mycelial growth fitted to Gompertz model gave similar parameter estimates for isolates from the different sampling sites. No molecular variability was observed based on ITS and SSR analysis but IRAP and REMAP tests showed high polymorphism. The total genetic diversity based on IRAP and REMAP tests was 0.28 and the genetic diversity within population was 0.24, with Nei’s diversity, Shannon’s Information, and percent polymorphism values of 0.315, 0.48, and 95.24, respectively for the whole sampled population; isolates from Los Rios province being the most polymorphic. Compost tea sensitivity analysis performed on 85 of the isolates showed a significant inhibitory effect at concentrations of 2.75% or above but concentrations below 1.5% significantly enhanced the growth of most isolates of the pathogen. Results confirmed the high genetic diversity of M. perniciosa and provided insights into growth rate and compost tea sensitivity of the pathogen in Ecuador.

Keywords

Witches’ broom disease IRAP REMAP Microsatellites 

Notes

Acknowledgements

This research was financially supported by VLIR NETWORK Ecuador grant to JMC.

Funding

This study was funded by VLIR NETWORK Ecuador grant to JMC.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2019_1714_MOESM1_ESM.pdf (526 kb)
Online Resource 1 (PDF 526 kb)
10658_2019_1714_MOESM2_ESM.pdf (526 kb)
Online Resource 2 (PDF 525 kb)

References

  1. Addinsoft (2019). XLSTAT statistical and data analysis solution. Long Island, NY, USA. https://www.xlstat.com. Accessed 11 March 2019.
  2. Aime, M. C., & Phillips-Mora, W. (2005). The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao ) form a new lineage of Marasmiaceae. Mycologia, 97(5), 1012–1022.  https://doi.org/10.1080/15572536.2006.11832751.PubMedGoogle Scholar
  3. Aragundi, J. A. (1982). Culture and histology of Crinipellis perniciosa (Stahel) singer. Gainesville, FL: University of FloridaGoogle Scholar
  4. Artero, A. S., Silva, J. Q., Albuquerque, P. S. B., Bressan, E. A., Leal, G. A., Sebbenn, A. M., et al. (2016). Spatial genetic structure and dispersal of the cacao pathogen Moniliophthora perniciosa in the Brazilian Amazon. Plant Pathology, 66, 1–12.  https://doi.org/10.1111/ppa.12644.Google Scholar
  5. Burdon, J. J. (1993). Genetic variation in pathogen populations and its implications for adaptation to host resistance. In: T. Jacob & J. E. Parlevliet (Eds.), Durability of disease resistance. Current Plant Science and Biotechnology in Agriculture (pp. 41–56). Dordrecht: Springer.  https://doi.org/10.1007/978-94-011-2004-3_4
  6. Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20(9), 2380.CrossRefPubMedPubMedCentralGoogle Scholar
  7. de Arruda, M. C., Ferreira, M. A., Miller, R. N., Resende, M. L., & Felipe, M. S. (2003). Nuclear and mitochondrial rDNA variability in Crinipellis perniciosa from different geographic origins and hosts. Mycological Research, 107, 25–37.  https://doi.org/10.1017/S0953756202006895.
  8. de Queiroz, C. B., Santana, M. F., da Silva, G. F., Mizubuti, E. S. G., de Araújo, E. F., & de Queiroz, M. V. (2014). Use of the IRAP marker to study genetic variability in Pseudocercospora fijiensis populations. Current Microbiology, 68(3), 358–364.  https://doi.org/10.1007/s00284-013-0454-y.CrossRefPubMedGoogle Scholar
  9. Evans, H. C. (1978). Witches’ broom disease of cocoa Crinipellis perniciosa) in Ecuador. Annals of Applied Biology, 89(2), 185–192.  https://doi.org/10.1111/j.1744-7348.1978.tb07689.x.
  10. Evans, H. C. (1980). Pleomorphism in Crinipellis perniciosa, causal agent of witches’ broom disease of cocoa. Transactions of the British Mycological Society, 74(3), 515–523.  https://doi.org/10.1016/S0007-1536(80)80051-9.CrossRefGoogle Scholar
  11. Ferreira, L. F., Duarte, K. M., Gomes, L. H., Carvalho, R. S., Leal Junior, G. A., Aguiar, M. M., et al. (2012). Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae). Genetics and Molecular Research: GMR, 11(3), 2559–2568.  https://doi.org/10.4238/2012.July.10.11.CrossRefPubMedGoogle Scholar
  12. Furtek, T. A. (1994). Random amplified polymorphic DNA (RAPD) analysis of Crinipellis perniciosa isolates from different hosts. Plant Pathology, 43(6), 1020–1027.  https://doi.org/10.1111/j.1365-3059.1994.tb01651.x.CrossRefGoogle Scholar
  13. Garcia-Vallve, S., Palau, J., & Romeu, A. (1999). Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Molecular Biology and Evolution, 16(9), 1125–1134.  https://doi.org/10.1093/oxfordjournals.molbev.a026203.CrossRefPubMedGoogle Scholar
  14. Garzon, C. D., & Flores, F. J. (2013). Hormesis: Biphasic dose-responses to fungicides in plant pathogens and their potential threat to agriculture. In: M. Nita (Ed.), Fungicides - Showcases of Integrated Plant Disease Management from Around the World. London: IntechOpen.  https://doi.org/10.5772/55359.
  15. Gramacho, K. P., Risterucci, A. M., Lanaud, C., Lima, L. S., & Lopes, U. V. (2007). Characterization of microsatellites in the fungal plant pathogen Crinipellis perniciosa. Molecular Ecology Notes, 7(1), 153–155.  https://doi.org/10.1111/j.1471-8286.2006.01563.x.CrossRefGoogle Scholar
  16. Griffith, G. W., Nicholson, J., Nenninger, A., Birch, R. N., & Hedger, J. N. (2003). Witches’ brooms and frosty pods: two major pathogens of cacao. New Zealand Journal of Botany, 41(March 2013), 423–435.  https://doi.org/10.1080/0028825X.2003.9512860.CrossRefGoogle Scholar
  17. Henríquez, P., & Li-Pun, H. (2013). Innovaciones de impacto: Lecciones de la agricultura familiar en América Latina y el Caribe. San Jose, Costa Rica: Instituto Interamericano de Cooperacion para la Agricultura.Google Scholar
  18. Hernández-Villegas, J. J. (2016). Incidencia De La Escoba De Bruja (Crinipellis perniciosa) Sobre El Rendimiento De Dos Agroecosistemas De Cacao Con Diferentes Condiciones De Manejo. Bioagro, 28(1), 59–64.Google Scholar
  19. Holliday, P. (1970). Crinipellis perniciosa. CMI Descriptions of Pahogenic Fungi and Bacteria, (223), 1–2.Google Scholar
  20. Jimenez, M. I. (2008). Effect of the nutritional status of Banana (Musa Spp.) on leaf disease infestation by Mycosphaerella Fijiensis Morelet in Ecuador. Ku Leuven, (1), 161.  https://doi.org/10.1017/CBO9781107415324.004.
  21. Jimenez, M., Van der Veken, L., Neirynck, H., Rodríguez, H., Ruiz, O., & Swennen, R. (2007). Organic banana production in Ecuador: its implications on black Sigatoka development and plant–soil nutritional status. Renewable Agriculture and Food Systems, 22(04), 297–306.  https://doi.org/10.1017/S1742170507001895.CrossRefGoogle Scholar
  22. Lana, T. G., Azevedo, J. L., Pomella, A. W., Monteiro, R. T., Silva, C. B., & Araújo, W. L. (2011). Endophytic and pathogenic isolates of the cacao fungal pathogen Moniliophthora perniciosa (Tricholomataceae) are indistinguishable based on genetic and physiological analysis. Genetics and Molecular Research: GMR, 10(1), 326–334.  https://doi.org/10.4238/vol10-1gmr895.CrossRefPubMedGoogle Scholar
  23. Lima, L. S., Gramacho, K. P., Gesteira, A. S., Lopes, U. V., Gaiotto, F. A., Zaidan, H. A., Pires, J. L., Cascardo, J. C. M., & Micheli, F. (2008). Characterization of microsatellites from cacao-Moniliophthora perniciosa interaction expressed sequence tags. Molecular Breeding, 22(2), 315–318.  https://doi.org/10.1007/s11032-008-9174-6.CrossRefGoogle Scholar
  24. Magdama, F. (2010). Estudio del efecto de Bioles y cepas de Trichoderma sp. aisladas de zona cacaotera, como alternativa de control de Moniliophthora roreri, en condiciones in vitro. Guayaquil, Ecuador: ESPOLGoogle Scholar
  25. Mamede, R., Montini, D. C., Raimundo, J., Passos, D. S., & Ferreira, A. (2006). Digital monitoring of mycelium growth kinetics and vigor of Shiitake (Lentinula edodes (berk.) Pegler) on agar medium. Brazilian Journal of Microbiology, 37, 90–95.Google Scholar
  26. Maridueña-Zavala, M. G., Villavicencio-Vásquez, M. E., Cevallos-Cevallos, J. M., & Peralta, E. L. (2016). Molecular and morphological characterization of Moniliophthora roreri isolates from cacao in Ecuador. Canadian Journal of Plant Pathology, 38(4), 460–469.CrossRefGoogle Scholar
  27. Medeiros, F. H. V., Pomella, A. W. V., de Souza, J. T., Niella, G. R., Valle, R., Bateman, R. P., et al. (2010). A novel, integrated method for management of witches’ broom disease in Cacao in Bahia, Brazil. Crop Protection, 29(7), 704–711.  https://doi.org/10.1016/j.cropro.2010.02.006.CrossRefGoogle Scholar
  28. Meinhardt, L. W., Gilson Lacerda Costa, G., Thomazella, D. P., José Teixeira, P. P., Falsarella Carazzolle, M., Schuster, S. C., et al. (2014). Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases. BMC Genomics, 15, 1–25.  https://doi.org/10.1186/1471-2164-15-164.CrossRefGoogle Scholar
  29. Melo, B. L. B., de Souza, J. T., Santos, R. M. F., Rehner, S. a., Solis, K. H., Suarez, C., et al. (2014). Development of microsatellites for the cacao frosty pod rot pathogen,\n Moniliophthora roreri. Forest Pathology, 44(4), 320–324.  https://doi.org/10.1111/efp.12103.CrossRefGoogle Scholar
  30. Mengesha, W. K., Gill, W. M., Powell, S. M., Evans, K. J., & Barry, K. M. (2017). A study of selected factors affecting efficacy of compost tea against several fungal pathogens of potato. Journal of Applied Microbiology, 123, 732–747.  https://doi.org/10.1111/jam.13530.CrossRefPubMedGoogle Scholar
  31. Midi, H., Sarkar, S. K., & Rana, S. (2010). Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics, 13(3), 253–267.  https://doi.org/10.1080/09720502.2010.10700699.CrossRefGoogle Scholar
  32. Milton, B., Alfonso, V., Andrea, M., José, C. C., Arroyo, S. C., Morales, D., et al. (2016). Comportamiento Agroproductivo De 31 Clones De Cacao Nacional (Theobroma Cacao L.) Con La Aplicación De Un Biocontrolador Para Moniliasis (Moniliophthora Roreri). Investigación y Saberes, V(1), 39–54.Google Scholar
  33. Naturland (2015). How to grow organic cocoa. An illustrated hanbook on organic principles of cocoa production. Resource document. Association for Organic Agriculture. https://www.infonet-biovision.org/Publications/How-grow-organic-cocoa-handbook-Naturland. Accessed 21 Sept 2018.
  34. Osorio-Solano, C., Orozco-Castaño, C. A., López-Gartner, G. A., & Rivera-Páez, F. A. (2012). Genetic variability of Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora, comb. nov. (Agaricales – Marasmiaceae) in varieties of cocoa (Theobroma cacao L.). Acta Agronómica, 61(2), 85–93.Google Scholar
  35. Páez, O., Valverde, R., Gómez, L., & Brenes, A. (2005). Diversidad genetica de aislamientos de Phytophthora infestans en plantaciones de papa en Costa Rica con el uslo de RAPDS 1. Agronomía Costarricense, 29(1), 41–55.Google Scholar
  36. Pane, C., Celano, G., Villecco, D., & Zaccardelli, M. (2012). Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost-tea applications. Crop Protection, 38, 80–86.  https://doi.org/10.1016/j.cropro.2012.03.012.CrossRefGoogle Scholar
  37. Peever, T. L., Zeigler, R. S., Dorrance, A. E., & Correa-Victoria, F. J. (2000). Pathogen population genetics and breeding for disease resistance. APSnet Feature Articles  https://doi.org/10.1094/APSnetFeature-2000-0700.
  38. Pereira, J. F., Almeida, A. P. M. M., Cota, J., Pamphile, J. A., da Silva, G. F., de Araújo, E. F., et al. (2013). Boto, a class II transposon in Moniliophthora perniciosa, is the first representative of the PIF/ Harbinger superfamily in a phytopathogenic fungus. Microbiology (United Kingdom), 159(1), 112–125.  https://doi.org/10.1099/mic.0.062901-0.Google Scholar
  39. Pereira, J. F., Araújo, E. F., Brommonschenkel, S. H., Queiroz, C. B., Costa, G. G. L., Carazzolle, M. F., Pereira, G. A. G., & Queiroz, M. V. (2015). MpSaci is a widespread gypsy-Ty3 retrotransposon highly represented by non-autonomous copies in the Moniliophthora perniciosa genome. Current Genetics, 61, 185–202.  https://doi.org/10.1007/s00294-014-0469-3.CrossRefPubMedGoogle Scholar
  40. Phillips-Mora, W., Aime, M. C., & Wilkinson, M. J. (2007). Biodiversity and biogeography of the cacao (Theobroma cacao) pathogen Moniliophthora roreri in tropical America. Plant Pathology, 56(6), 911–922.  https://doi.org/10.1111/j.1365-3059.2007.01646.x.CrossRefGoogle Scholar
  41. Ploetz, R. C., Schnell, R. J., Ying, Z., Zheng, Q., Olano, C. T., Johnson, E., & Motamayor, J. C. (2005). Molecular diversity in Crinipellis perniciosa with AFLPs. European Journal of Plant Pathology, 111, 317–326.CrossRefGoogle Scholar
  42. Purdy, L., & Schmidt, R. (1996). STATUS OF CACAO WITCHES’BROOM: biology, epidemiology, and management. Annual Review of Phytopathology, 34, 573–594.  https://doi.org/10.1146/annurev.phyto.34.1.573.CrossRefPubMedGoogle Scholar
  43. Quingaísa, E. (2007). Estudio de caso: denominación de origen “cacao arriba”. Quito, Ecuador: FAOGoogle Scholar
  44. Rincones, J., MAZOTT, G. D., Griffith, G. W., POMEL, A., FIGUEIRA, A., Leal, G. A., Jr., et al. (2006). Genetic variability and chromosome-length polymorphisms of the witches’ broom pathogen Crinipellis perniciosa from various plant hosts in South America. Mycological Research, 110(7), 821–832.  https://doi.org/10.1016/j.mycres.2006.05.002.CrossRefPubMedGoogle Scholar
  45. Santana, M. F., de Araújo, E. F., de Souza, J. T., Mizubuti, E. S. G., & de Queiroz, M. V. (2012). Development of molecular markers based on retrotransposons for the analysis of genetic variability in Moniliophthora perniciosa. European Journal of Plant Pathology, 134(3), 497–507.  https://doi.org/10.1007/s10658-012-0031-4.CrossRefGoogle Scholar
  46. Scheuerell, S., & Mahaffee, W. (2002). Compost tea: Principles and prospects for plant disease control. Compost Science & Utilization, 10(4), 313–338.  https://doi.org/10.1080/1065657X.2002.10702095.CrossRefGoogle Scholar
  47. Senasica. (2016). Escoba de Bruja del Cacao Moniliophthora perniciosa. Ficha técnica N o 4. Resource document. SENASICA. https://www.gob.mx/cms/uploads/attachment/file/215890/30_Ficha_T_cnica_-_Escoba_de_bruja_del_cacao.pdf. Accessed 21 Sept 2018.
  48. Silva, D. V., Araújo, I. S., Branco, S. M. J., Aguilar-Vildoso, C. I., Lopes, U. V., Marelli, J. P., Motamayor, J. C., Royaert, S., Rebouças, R. C., & Corrêa, R. X. (2014). Analysis of resistance to witches’ broom disease (Moniliophthora perniciosa) in flower cushions of Theobroma cacao in a segregating population. Plant Pathology, 63, 1264–1271.  https://doi.org/10.1111/ppa.12204.CrossRefGoogle Scholar
  49. Stukenbrock, E. H., & McDonald, B. A. (2008). The origins of plant pathogens in agro-ecosystems. Annual Review of Phytopathology, 46(1), 75–100.  https://doi.org/10.1146/annurev.phyto.010708.154114.CrossRefPubMedGoogle Scholar
  50. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.  https://doi.org/10.1093/molbev/msr121.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tirado-Gallego, P. A., Lopera-álvarez, A., & Ríos-osorio, L. A. (2016). Estrategias de control de Moniliophthora roreri y Moniliophthora perniciosa en Theobroma cacao L.: revisión sistemática. Revista Corpoica - Ciencia y Tecnología Agropecuaria, 17(3), 417–430.  https://doi.org/10.21930/rcta.vol17_num3_art:517.
  52. Tjørve, K. M. C., & Tjørve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: an addition to the unified-Richards family. PLoS One, 12(6), e0178691.  https://doi.org/10.1371/journal.pone.0178691.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Winsor, C. P. (1932). The Gompertz curve as a growth curve. Proceedings of the National Academy of Sciences, 18(1), 1–8.  https://doi.org/10.1073/pnas.18.1.1.CrossRefGoogle Scholar
  54. Yeh, F. C., & Boyle, T. J. B. (1997). Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian Journal of Botany, 129, 157–163.Google Scholar
  55. Yoo, W., Mayberry, R., Bae, S., Singh, K., He, Q., & Lillard, J., Jr. (2014). A study of effects of multicollinearity in the multivariable analysis. International Journal of Applied Science and Technology, 4(5), 9–19.  https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted.PubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • María Gabriela Maridueña-Zavala
    • 1
  • Andrea Freire-Peñaherrera
    • 1
  • Rodrigo Fernando Espinoza-Lozano
    • 1
  • Mirian Villavicencio-Vasquez
    • 1
  • Maria Jimenez-Feijoo
    • 2
  • Juan Manuel Cevallos-Cevallos
    • 1
    • 2
    Email author
  1. 1.Centro de Investigaciones Biotecnológicas del Ecuador CIBEEscuela Superior Politécnica del Litoral ESPOLGuayaquilEcuador
  2. 2.Facultad de Ciencias de la Vida FCVEscuela Superior Politécnica del Litoral ESPOLGuayaquilEcuador

Personalised recommendations