Advertisement

Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis

  • Chaochun ZhangEmail author
  • Yan Dong
  • Li Tang
  • Yi Zheng
  • David Makowski
  • Yang Yu
  • Fusuo Zhang
  • Wopke van der Werf
Article

Abstract

Ecological intensification of agriculture calls for ecological mechanisms to replace anthropogenic inputs. Cereal/legume intercropping increases yields due to species complementarities, it produces high protein food and feed, and it reduces the need for artificial N fertilizer because legumes fix N biologically. In addition, intercropping has the potential to suppress plant diseases, but its efficacy for disease suppression in cereal/legume mixtures has not been well characterized quantitatively. Here we conducted meta-analysis to quantify the disease suppressive effect of intercropping cereals with legumes at different levels of N fertilizer. Intercropping reduced disease incidence (measured by the odds ratio of disease occurrence) by 45% on average. This reduction was significant (P < 0.01) for four out of six studied pathogens: yellow rust (Puccinia striiformis f.sp. tritici) and mildew (Blumeria graminis) in wheat (Triticum aestivum), and chocolate spot (Botrytis fabae) and Fusarium wilt (Fusarium oxysporum) in faba bean (Vicia faba). Disease reduction was marginally significant for yellow rust in barley (Puccinia striiformis f.sp. hordei) (P < 0.10) and not significant for bean rust (Uromyces fabae). The reduction in disease incidence was greatest during the early stages of epidemics. N fertilizer strongly increased the incidence of powdery mildew of wheat, but it did not affect the incidence of the other diseases and it did not affect the effectiveness of intercropping as a management strategy for disease control. While nitrogen input increased powdery mildew incidence in both sole and intercropped wheat, the incidence was lower in the intercropped than sole wheat at all levels of N input. The disease suppressive effect of intercropping on wheat powdery mildew or any other disease was not affected by the amount of nitrogen fertilizer. The results show that intercropping has a substantial and consistent effect on disease incidence in cereal/faba bean mixtures across studies, but is not sufficient to provide complete disease control. Intercropping is therefore best used as a component in an integrated approach for managing plant diseases.

Keywords

Intercropping Disease control Meta-analysis Nutrient management 

Notes

Acknowledgments

We are grateful for the financial support from the key project of the Ministry of Science and Technology of China (grant number 2016YFE0101100), the National Natural Science Foundation of China (NO. 31210103906), the Chinese National Basic Research Program (2015CB150405), and the European Union’s Horizon 2020 Programme for Research & Innovation under grant agreement n°727217 “ReMIX”.

Author’s contributions

YD and CZ did the literature search, extracted data and conducted the analysis. CZ, YD, YY, DM and WW designed methods for statistical meta-analysis and interpreted results. All authors contributed to formulation of research aims and overall approach, discussed outcomes and approved the submission. CZ, YD, DM and WW wrote the paper.

Compliance with ethical standards

Conflict of interests

The authors declare no conflicts of interests.

Supplementary material

10658_2019_1711_MOESM1_ESM.docx (2.8 mb)
ESM 1 (DOCX 2856 kb)

References

  1. Agresti A. 2002. Categorical data analysis. Wiley. 2nd edition.Google Scholar
  2. Bedoussac, L., Journet, E., Hauggaard-Nielsen, H., Naudin, C., Corre-Hellou, G., Jensen, E. S., Prieur, L., & Justes, E. (2015). Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agronomy Sustainable Development, 35, 911–935.CrossRefGoogle Scholar
  3. Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology and Evolution, 28(4), 230–238.CrossRefPubMedGoogle Scholar
  4. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley.Google Scholar
  5. Boudreau, M. A. (2013). Diseases in intercropping systems. Annual Review of Phytopathology, 51, 499–519.CrossRefPubMedGoogle Scholar
  6. Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. Plant Pathology, 60, 2–14.CrossRefGoogle Scholar
  7. Chen, Y. X., Zhang, F. S., Tang, L., Zheng, Y., Li, Y. J., Christie, P., & Li, L. (2007). Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean. Plant and Soil, 291, 1–13.CrossRefGoogle Scholar
  8. Cong, W. F., Hoffland, E., Li, L., Six, J., Sun, J. H., Bao, X. G., Zhang, F. S., & van der Werf, W. (2015). Intercropping enhances soil carbon and nitrogen. Global Change Biology, 21, 1715–1726.CrossRefPubMedGoogle Scholar
  9. Dassou, A. G., & Tixier, P. (2016). Response of pest control by generalist predators to local-scale plant diversity: A meta-analysis. Ecology and Evolution, 6(4), 1143–1153.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy Sustainable Development, 28, 33–46.CrossRefGoogle Scholar
  11. Garrett, K. A., Zúniga, L. N., Roncal, E., Forbes, G. A., Mundt, C. C., Su, Z., & Nelson, R. J. (2009). Intraspecific functional diversity in hosts and its effect on disease risk across a climatic gradient. Ecological Applications, 19(7), 1868–1883.CrossRefPubMedGoogle Scholar
  12. Hoffland, E., van Beusichem, M. L., & Jeger, M. J. (1999). Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea. Plant and Soil, 210, 263–272.CrossRefGoogle Scholar
  13. Hong, Y., Heerink, N. B. M., Jin, S. Q., Berentsen, P. B. M., Zhang, L., & van der Werf, W. (2017). Intercropping and agroforestry in China; current state and trends. Agriculture, Ecosystems and Environment, 244, 52–61.CrossRefGoogle Scholar
  14. Jensen, B., & Munk, L. (1997). Nitrogen-induced changes in colony density and spore production of Erysiphe graminis f.sp. hordei on seedlings of six spring barley cultivars. Plant Pathology, 46, 191–202.CrossRefGoogle Scholar
  15. Jiang, Y. N., Wang, W. X., Xie, Q. J., Liu, N., Wang, D. P., Zhang, X. W., Yang, C., Chen, X. Y., Tang, D. Z., & Wang, E. T. (2017). Plant transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356, 1172–1175.CrossRefPubMedGoogle Scholar
  16. Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C., Holt, R. D., Hudson, P., Jolles, A., Jones, K. E., Mitchell, C. E., Myers, S. S., Bogich, T., & Ostfeld, R. S. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647–652.CrossRefPubMedGoogle Scholar
  17. Li, C. Y., He, X. H., Zhu, S. S., Zhou, H. P., Wang, Y. Y., Li, Y., Yang, J., Fan, J. X., Yang, J. C., Wang, G. B., Long, Y. F., Xu, J. Y., Tang, Y. S., Zhao, G. H., Yang, J. R., Liu, L., Sun, Y., Xie, Y., Wang, H. N., & Zhu, Y. Y. (2009). Crop diversity for yield increase. PLoS One, 4(11), e8049.  https://doi.org/10.1371/journal.pone.0008049.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lithourgidis, A. S., Dordas, C. A., Damalas, C. A., & Vlachostergios, D. N. (2011). Annual intercrops: An alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5, 396–410.Google Scholar
  19. Lv, Z. X., Yu, X. P., Heong, K. L., & Hu, C. (2005). Effects of nitrogenous fertilization in rice fields on the predatory function of Cytorhinus lividipennis Reuter to Nilaparvata lugens stål. Acta Entomologica Sinica, 48, 48–56 (In Chinese).Google Scholar
  20. Martin-Guay, M.-O., Paquette, A., Dupras, J., & Rivest, D. (2018). The new green revolution: Sustainable intensification of agriculture by intercropping. Science of the Total Environment, 615, 767–772.CrossRefPubMedGoogle Scholar
  21. Mitchell, C. E., Reich, P. B., Tilman, D., & Groth, J. V. (2003). Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biology, 9, 438–451.CrossRefGoogle Scholar
  22. Mundt, C. C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 40, 381–410.CrossRefPubMedGoogle Scholar
  23. Neumann, S., Paveley, N. D., Beed, F. D., & Sylvester-Bradely, R. (2004). Nitrogen per unit leaf area affects the upper asymptote of Puccinia striiformis f.sp. tritici epidemics in winter wheat. Plant Pathology, 53, 725–732.CrossRefGoogle Scholar
  24. Pelzer, E., Bazot, M., Makowski, D., Corre-Hellou, G., Naudin, C., Rifaï, M. A., Baranger, E., Bedoussac, L., Biarnès, V., Boucheny, P., Corrouée, B., Dorvillez, D., Foissy, D., Gaillard, B., Guichar, L., Mansard, M., Omon, B., Prieur, L., Yvergniaus, M., Justes, E., & Feuffroy, M. (2012). Pea-wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. European Journal of Agronomy, 40, 39–53.CrossRefGoogle Scholar
  25. Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789–799.CrossRefPubMedGoogle Scholar
  26. Pinheiro, J., & Bates, D. (2000). Mixed-effects models in S and S-plus. New York: Springer.CrossRefGoogle Scholar
  27. R Core Team, 2015. R: A language and Environment for Statistical Computing. Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  28. Ren, L. X., Su, S. M., Yang, X. M., Xu, Y. C., Huang, Q. W., & Shen, Q. R. (2008). Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biology and Biochemistry, 40, 834–844.CrossRefGoogle Scholar
  29. Royston, P. (1982). An extension of Shapiro and Wilk’s W test for normality to large samples. Applied Statstics, 31, 115–124.CrossRefGoogle Scholar
  30. Savary, S., Ficke, A., Aubertot, J., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4, 519–537.CrossRefGoogle Scholar
  31. Simón, M. R., Cordo, C. A., Perelló, A. E., & Struik, P. C. (2003). Influence of nitrogen supply on the susceptibility of wheat to Septoria tritici. Journal of Phytopathology, 151, 283–289.CrossRefGoogle Scholar
  32. Skelsey, P., Rossing, W. A. H., Kessel, G. J. T., Powell, J., & van der Werf, W. (2005). Influence of host diversity on development of epidemics: An evaluation and elaboration of mixture theory. Phytopathology, 95, 328–338.CrossRefPubMedGoogle Scholar
  33. Snoeijers, S. S., Pérez-García, A., Joosten, H. A. J., & De Wit, P. J. G. M. (2000). The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. European Journal of Plant Pathology, 106, 493–506.CrossRefGoogle Scholar
  34. Strehmel, N., Bottcher, C., Schmidt, S., & Scheel, D. (2014). Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry, 108, 35–46.CrossRefPubMedGoogle Scholar
  35. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.CrossRefPubMedGoogle Scholar
  36. Tooker, J. F., & Frank, S. D. (2012). Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology, 49, 974–985.CrossRefGoogle Scholar
  37. Trenbath, B. R. (1993). Intercropping-bases of productivity intercropping for the management of pests and diseases. Field Crops Research, 34, 381–405.CrossRefGoogle Scholar
  38. Turnbull, L. A., & Hector, A. (2010). How to get even with pests. Nature, 466, 36–37.CrossRefPubMedGoogle Scholar
  39. van Dam, N. M., & Bouwmeester, H. (2016). Metabolimics in the rhizosphere: Tapping into belowground chemical communication. Trends in Plant Science, 21, 256–265.CrossRefPubMedGoogle Scholar
  40. Vandermeer, J. (1998). Maximizing crop yield in alley crops. Agroforestry Systems, 40, 199–206.CrossRefGoogle Scholar
  41. Weston, L. A., & Mathesius, U. (2013). Flavonoids: Their structure, biosynthesis and role in the rhizosphere, including allelopathy. Journal of Chemical Ecology, 39, 283–293.CrossRefPubMedGoogle Scholar
  42. Wiik, L. (2009). Yield and disease control in winter wheat in southern Sweden during 1977-2005. Crop Protection, 28, 82–89.CrossRefGoogle Scholar
  43. Willey, R. W. (1985). Evaluation and presentation of intercropping advantages. Experimental Agriculture, 21, 119–133.CrossRefGoogle Scholar
  44. Xu, W. H., Liu, D., Wu, F. Z., & Liu, S. W. (2015). Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. European Journal of Plant Pathology, 141, 209–216.CrossRefGoogle Scholar
  45. Yu, Y., Stomph, T. J., Makowski, D., & van der Werf, W. (2015). Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 184, 133–144.CrossRefGoogle Scholar
  46. Yu, Y., Stomph, T., Makowski, D., Zhang, L. Z., & van der Werf, W. (2016). A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management. Field Crops Research, 198, 269–279.CrossRefGoogle Scholar
  47. Zadoks, J. C., & Schein, R. D. (1979). Epidemiology and plant disease management (p. 427). Oxford: Oxford University Press.Google Scholar
  48. Zhang, F. S., & Li, L. (2003). Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 248, 305–312.CrossRefGoogle Scholar
  49. Zhang, S., Luo, H. G., Zhang, Q. D., Xu, Y. Y., Zou, C. H., Guo, M. L., He, S. M., Fang, X. W., Zhang, J. X., & Chen, Q. Z. (2008). Effects of nitrogen and potassium fertilizer applications on yield and occurrence of major diseases and insect pests of rice. Journal of Huazhong Agricultural University, 27, 732–735 (In Chinese).CrossRefGoogle Scholar
  50. Zhu, Y. Y., Chen, H. R., Fan, J. H., Wang, Y. Y., Li, Y., Chen, J. B., Fan, J. X., Yang, S. S., Hu, L. P., Leung, H., Mew, T. W., Teng, P. S., Wang, Z. H., & Mundt, C. C. (2000). Genetic diversity and disease control in rice. Nature, 406, 718–722.CrossRefPubMedGoogle Scholar
  51. Zuur AF, Ieno EN, Walter NJ, Saveliev AA & Smith GM. 2009. Mixed effects models and extensions in ecology with R. Springer, 574 pp.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Chaochun Zhang
    • 1
    • 2
    Email author
  • Yan Dong
    • 3
  • Li Tang
    • 3
  • Yi Zheng
    • 3
  • David Makowski
    • 4
  • Yang Yu
    • 5
  • Fusuo Zhang
    • 1
  • Wopke van der Werf
    • 5
  1. 1.College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
  2. 2.Center for Resources, Environment and Food SecurityChina Agricultural UniversityBeijingChina
  3. 3.College of Resources and Environmental ScienceYunnan Agricultural UniversityYunnan ProvinceChina
  4. 4.INRA, UMR 211 AgronomieINRA AgroParisTech Université Paris_SaclayThiverval GrignonFrance
  5. 5.Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands

Personalised recommendations