Advertisement

European Journal of Plant Pathology

, Volume 154, Issue 4, pp 1165–1170 | Cite as

Characterization and detection of maize-associated pteridovirus (MaPV), infecting maize (Zea mays) in the Arusha region of Tanzania

  • David Alan ReadEmail author
  • Jonathan Featherston
  • David Jasper Gilbert Rees
  • Genevieve Dawn Thompson
  • Ronel Roberts
  • Bradley Charles Flett
  • Kingstone Mashingaidze
  • Gerhard Pietersen
  • Barnabas Kiula
  • Alois Kullaya
  • Ernest Mbega
Article
  • 181 Downloads

Abstract

Maize lethal necrosis disease (MLND) is currently threatening maize production in a large area of East Africa. Synergistic infections of Maize chlorotic mottle virus (MCMV) and members of the Potyviridae family are known to elicit MLND. Metaviromics studies of plant viruses have allowed for the discovery of novel viral diversity, with a number of these viruses having recently been shown to co-occur with MCMV and Potyviruses. However, their contribution to the expression of disease symptoms still requires extensive research. In a survey for viruses associated with maize in Tanzania, 35 samples were sequenced using an RNA-tag-seq metaviromics approach. Bioinformatic analysis of assembled reads yielded two contigs (5.8 and 2.7 kbp) that shared sequence homology with RNA1 and RNA2 of the dsRNA Japanese holly fern mottle virus (JHFMoV) (genus: Pteridovirus) from a single sample collected in the Arusha region. RNA1 encodes for a polyprotein product containing putative viral methyltransferase, helicase and polymerase domains. RNA2 contains three open reading frames (ORFs), one of which encodes for a putative movement protein, while the remaining two encode for putative products with no known function. The tentative name Maize-associated pteridovirus (MaPV) has been proposed for the virus in this study.

Keywords

Pteridovirus Maize lethal necrosis disease Illumina sequencing Arusha Tanzania 

Notes

Compliance with ethical standards

The manuscript constitutes original research and has not been previously published. All authors have agreed to the submission of the manuscript, which complies with the ethical standards of the journal.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adams, I. P., Miano, D. W., Kinyua, Z. M., Wangai, A., Kimani, E., Phiri, N., Reeder, R., Harju, V., Glover, R., Hany, U., Souza-Richards, R., Deb Nath, P., Nixon, T., Fox, A., Barnes, A., Smith, J., Skelton, A., Thwaites, R., Mumford, R., & Boonham, N. (2013). Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathology, 62, 741–749.CrossRefGoogle Scholar
  2. Adams, I.P., Braidwood, L.A., Stomeo, F., Phiri, N., Uwumukiza, B., Feyissa, B., Mahuku, G., et al. (2017). Characterising maize viruses associated with maize lethal necrosis symptoms in sub Saharan Africa. bioRxiv  https://doi.org/10.1101/161489.
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.CrossRefGoogle Scholar
  4. Deng, T. C., Chou, C. M., Chen, C. T., Tsai, C. H., & Lin, F. C. (2014). First report of Maize chlorotic mottle virus on sweet corn in Taiwan. Plant Disease, 98, 1748.CrossRefPubMedGoogle Scholar
  5. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  6. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.CrossRefGoogle Scholar
  7. Menzel, P., Ng, K. L., & Krogh, A. (2016). Fast and sensitive taxonomic classification for metagenomics with kaiju. Nature Communications, 7, 11257.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Niblett, C., & Claflin, L. (1978). Corn lethal necrosis, a new virus disease of corn in Kansas. Plant Disease Report, 62, 15–19.Google Scholar
  9. Quito-Avila, D. F., Alvarez, R. A., & Mendoza, A. A. (2016). Occurrence of maize lethal necrosis virus in Ecuador: A disease without boundaries? European Journal of Plant Pathology, 146, 705–710.CrossRefGoogle Scholar
  10. Rancurel, C., Khosravi, M., Dunker, A. K., Romero, P. R., & Karlin, D. (2009). Overlapping genes produce proteins with unusual sequence properties and offer insight into de novo protein creation. Journal of Virology, 83(20), 10719–10736.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Read, D. A., Featherstone, J., Rees, D. J. G., Thompson, G. D., Roberts, R., Flett, B. C., et al. (2018). First report of maize yellow mosaic virus (MaYMV) on maize (Zea mays) in Tanzania. Journal of Plant Pathology, 101, 203.  https://doi.org/10.1007/s42161-018-0152-5.CrossRefGoogle Scholar
  12. Shishkin, A. A., Giannoukos, G., Kucukural, A., Ciulla, D., Busby, M., Surka, C., & Chen, J. (2015). Simultaneous generation of many RNA-seq libraries in a single reaction. Nature Methods, 12, 323–325.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Valverde, R. A., & Sabanadzovic, S. (2009). A novel plant virus with unique properties infecting Japanese holly fern. Journal of General Virology, 90, 2542–2549.CrossRefPubMedGoogle Scholar
  14. Wamaitha, M. J., Nigam, D., Maina, S., Stomeo, F., Wangai, A., Njuguna, J. N., Holton, T. A., Wanjala, B. W., Wamalwa, M., Lucas, T., Djikeng, A., & Garcia-Ruiz, H. (2018). Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya. Virology Journal, 15, 90.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Wangai, A. W., Redinbaugh, M. G., Kinyua, Z. M., Mahuku, G., Sheets, K., & Jeffers, D. (2012). First report of Maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Disease, 96, 1582.CrossRefPubMedGoogle Scholar
  16. Wheeler, D. L., Church, D. M., Federhen, S., Lash, A. E., Madden, T. L., Pontius, J. U., et al. (2003). Database resources of the National Center for biotechnology. Nucleic Acids Research, 31(1), 28–33.CrossRefPubMedPubMedCentralGoogle Scholar
  17. White, E. J., Venter, M., Hiten, N. F., & Burger, J. T. (2008). Modified cetyltrimethylammonium bromide method improves robustness and versatility: The benchmark for plant RNA extraction. Biotechnology Journal, 3, 1424–1428.CrossRefPubMedGoogle Scholar
  18. Xie, L., Zhang, J., Wang, Q., Meng, C., Hong, J., & Zhou, X. (2011). Characterization of Maize chlorotic mottle virus associated with maize lethal necrosis disease in China. Journal of Phytopathology, 159(3), 191–193.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • David Alan Read
    • 1
    Email author
  • Jonathan Featherston
    • 1
  • David Jasper Gilbert Rees
    • 1
  • Genevieve Dawn Thompson
    • 1
  • Ronel Roberts
    • 2
  • Bradley Charles Flett
    • 3
  • Kingstone Mashingaidze
    • 3
  • Gerhard Pietersen
    • 4
  • Barnabas Kiula
    • 5
  • Alois Kullaya
    • 6
  • Ernest Mbega
    • 7
  1. 1.Agricultural Research Council - Biotechnology PlatformOnderstepoortSouth Africa
  2. 2.Agricultural Research Council - Plant Protection ResearchQueenswoodSouth Africa
  3. 3.Agricultural Research Council - Grain CropsPotchefstroomSouth Africa
  4. 4.Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
  5. 5.Tanzania Agricultural Research Institute (TARI, Ilonga)MorogoroTanzania
  6. 6.Tanzania Agricultural Research Institute (TARI, Mikocheni)Dar es SalaamTanzania
  7. 7.Nelson Mandela African Institution of Science and Technology (NM-AIST)ArushaTanzania

Personalised recommendations