Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients

  • Yane Guo
  • Ping Gao
  • Fang Li
  • Tingyu DuanEmail author


Both arbuscular mycorrhizal fungi (AMF) Claroideoglomus etunicatum and grass endophytes (Epichloë) could improve disease tolerance. Research is limited on the dual infection by AMF and Epichloë on plant diseases. Bipolaris sorokiniana is a fungal species that causes leaf spot in cereals, and also in perennial ryegrass (Lolium perenne), impacting its growth and production. This experiment tested the dual infection of AMF and Epichloë on perennial ryegrass growth and the physiological and biochemical indexes under limited soil conditions occurs in nature ecosystem. The results showed that infection with B. sorokiniana significantly decreased plant growth and shoot N concentration (P < 0.05), and this negative effect was exaggerated by AMF × Epichloë. The pathogen alone decreased AMF colonization (P < 0.05); however, the interactions of the pathogen and grass endophyte showed the highest value of perennial ryegrass AM colonization. Infection with AMF or Epichloë alone, or the combination of the two, suppressed the occurrence of leaf spot. Epichloë×AMF × B. sorokiniana had the highest amount of β-1,3-glucanase activity and jasmonic acid activity, whereas AMF and Epichloë alone or combined significantly increased the lignin content in diseased plants (P < 0.05). Limited soil nutrients did not affect the inhibition function of AMF and Epichloë for PRG leaf spot disease.


Perennial ryegrass Leaf spot Grass endophyte Mycorrhiza Biocontrol 



This research was financially supported by The National Natural Science Foundation (31100368), The China Agriculture Research System-Green manure (CARS-22), and The China Agriculture Research System-Forage Grass Research System (CARS-34).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2019_1689_MOESM1_ESM.docx (55 kb)
Supplementary Fig S1 Shoot dry weight (a) and root dry weight (b) of perennial ryegrass (Lolium perenne) with grass endophyte (E+) and without grass endophyte (E-), infected by Bipolaris sorokiniana, colonized by AMF Glomus etunicatum, NM = not inoculated with AMF. Bars topped by the same lower case letter do not differ significantly between treatments at P ≤ 0.05 by Tukey’s HSD. See Table 1 for ANOVA results. (DOCX 55 kb)


  1. Allen, M. F., Smith, W. K., Moore, T. S., & Christensen, M. (1981). Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. Lag Ex Steud. New Phytologist, 88, 683–693.Google Scholar
  2. Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2002). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3, 267–274.Google Scholar
  3. Boller, T., Gehri, A., Mauch, F., & Vgeli, U. (1983). Chitinase in bean leaves induction by ethylene, purification, properties, and possible function. Planta, 157, 22–31.Google Scholar
  4. Chen, K., Sun, J. Q., Liu, R. J., & Li, M. (2013). Effects of arbuscular mycorrhizal fungus on the seedling growth of grafted watermelon and the defensive enzyme activities in the seedling roots. Chinese Journal of Applied Ecology, 24, 135–141 (in Chinese).Google Scholar
  5. Cheng, G. W., & Breen, P. J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116, 865–869.Google Scholar
  6. Clarke, B. B., White, J. F. J., Hurley, R. H., Torres, M. S., Sun, S., & Huff, D. R. (2006). Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Disease, 90, 994–998.Google Scholar
  7. Clay, K., & Schardl, C. (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. American Naturalist, 160, 99–127.Google Scholar
  8. Duan, T. Y., Facelli, E., Smith, S. E., Smith, F. A., & Nan, Z. B. (2011). Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biology and Biochemistry, 43, 571–578.Google Scholar
  9. Feldmann, F., & Boyle, C. (1998). Concurrent development of arbuscular mycorrhizal colonization and powdery mildew infection on three Begonia Hiemalis Cultivars. Journal of Plant Diseases and Protection, 2, 121–129.Google Scholar
  10. Fitter, A. H. (1991). Costs and benefits of mycorrhizas: Implications for functioning under natural conditions. Experientia, 47, 350–355.Google Scholar
  11. Gao, P., Li, Y. D., Guo, Y. E., & Duan, T. Y. (2018). Co-inoculation of an AM fungus and a rhizobium reduce alfalfa spring black stem and leaf spot occurrence caused by Phoma medicaginis. In Crop and Pasture Science (Vol. 69, p. 933). Scholar
  12. Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–500.Google Scholar
  13. Gu, Y. X., Wang, D. J., & Hu, Y. G. (2007). The effect of endophytic fungus on Curvularia lunate in Festuca Arundinacea. Chinese Journal of Grassland, 29, 112–115 (In Chinese).Google Scholar
  14. Harper, J. K., Arif, A. M., Ford, E. J., Strobel, G. A., Porco, J. A., Tomer, D. P., Oneill, K. L., Heider, E. M., & Grant, D. M. (2003). Pestacin: A 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 59, 2471–2476.Google Scholar
  15. Hilou, A., Zhang, H., Franken, P., & Hause, B. (2014). Do jasmonates play a role in arbuscular mycorrhiza-induced local bioprotection of Medicago truncatula against root rot disease caused by Aphanomyces euteiches. Mycorrhiza, 24, 45–54.Google Scholar
  16. Huang, J. H., Zeng, R. S., & Luo, S. M. (2006). Studies on disease resistance of maize toward sheath blight induced by arbuscular mycorrhizal fungi. Chinese Journal of Eco-Agriculture, 14, 167–169.Google Scholar
  17. Jiang, S. P., & Wang, Z. Y. (2006). Study on the resistance of tall fescue infected by endophyte fungus to brown patch. Journal of Anhui Agricultural Science, 34, 4345–4346 (In Chinese).Google Scholar
  18. Kauffmann, S., Legrand, M., & Geoffroy, P. (1987). Biological function of pathogenesis-related′proteins: Four PR proteins of tobacco have β-1, 3-glucanase activity. EMBO Journal, 6, 3209–3212.Google Scholar
  19. Kelemu, S., Jr., J, W., Muñoz, F., & Takayama, Y. (2001). An endophyte of the tropical forage grass Brachiaria brizantha: Isolating, identifying, and characterizing the fungus, and determining its antimycotic properties. Canadian Journal of Microbiology, 47, 55–62.Google Scholar
  20. Klironomos, J. N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292–2301.Google Scholar
  21. Koch, K. E., & Johnson, C. R. (1984). Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiology, 75, 26–30.Google Scholar
  22. Li, F. (2016). Influence of grass endophyte and two arbuscular mycorrhizal fungi on leaf spot disease of perennial ryegrass. Master Degree Thesis of Lanzhou University. (In Chinese).Google Scholar
  23. Li, M. S., & Yan, X. F. (2014). Jasmonic acid signaling in plants and its biological functions in relation to environment. Acta Ecologica Sinica, 34.Google Scholar
  24. Li, F., Guo, Y. E., Christensen, M. J., Gao, P., Li, Y. Z., & Duan, T. Y. (2018). An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza, 28, 159–169.Google Scholar
  25. Liu, Q., Parsons, A. J., Xue, H., Fraser, k., Ryan, G. D., & Newman, A. N. (2011). Competition between foliar Neotyphodium lolii, endophytes and mycorrhizal Glomus, spp. fungi in Lolium perenne, depends on resource supply and host carbohydrate content. Functional Ecology, 25, 910–920.Google Scholar
  26. Ma, M. Z., & Nan, Z. B. (2011). Effects of fungal endophytes from perennial ryegrass on the growth of plant pathogens. Pratacultural Science, 28, 962–968 (In Chinese).Google Scholar
  27. Ma, M. Z., Christensen, M. J., & Nan, Z. B. (2015). Effects of the endophyte Epichloë festucae, var. lolii, of perennial ryegrass ( Lolium perenne ) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. European Journal of Plant Pathology, 141, 571–583.Google Scholar
  28. Mack, K. M. L., & Rudgers, J. A. (2008). Balancing multiple mutualists: Asymmetric interactions among plants, arbuscular mycorrhizal fungi and fungal endophytes. Oikos, 117, 310–320.Google Scholar
  29. Müller, J. (2003). Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Functional Plant Biology, 30, 419–424.Google Scholar
  30. Müse, G., Schindler, T., Bergfeld, R., Ruel, K., Jacquet, G., Lapierre, C., Speth, V., & Schopfer, P. (1997). Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta, 201, 146–159.Google Scholar
  31. Mustafa, G. B., Randoux, B., Tisserant, J., Fontaine, J., Magnin-Robert, M., Lounès-Hadj, S. A., & Reignault, P. (2016). Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mycorrhiza, 26, 685–697.Google Scholar
  32. Nan, Z. B. (1995). Fungicide seed treatments of sainfoil control seed-borne and root-invading fungi. New Zealand Journal of Agricultural Research, 38, 413–420.Google Scholar
  33. Nan, Z. B., & Li, C. J. (2004). Roles of the grass-Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 24, 605–616 (In Chinese).Google Scholar
  34. Novas, M. V., Cabral, D., & Godeas, A. M. (2005). Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis, 40, 23–30.Google Scholar
  35. Omacini, M., Eggers, T., Bonkowski, M., Gange, A. C., & Jones, T. H. (2006). Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Functional Ecology, 20, 226–232.Google Scholar
  36. Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–163.Google Scholar
  37. Pirttila, A. M., Laukkanen, H., & Hohtola, A. (2002). Chitinase production in pine callus (Pinus sylvestris): A defense reaction against endophytes? Planta, 214, 848–852.Google Scholar
  38. Pozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M., & Azcónaguilar, C. (2002). Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53, 525–534.Google Scholar
  39. Prestidge, R. A., & Ball, O. J. P. (1993). The role of endophytes in alleviating plant biotic stress in New Zealand. Palmerston North: Proceedings of the Second International Symposium on Acremonium/Grass Interactions, 141–151.Google Scholar
  40. Qin, J. H., Lu, Y., Li, X., Zhou, Y., Ren, A. Z., & Gao, Y. B. (2015). Effects of methyl jasmonate treatments and endophyte infection on growth of Achnatherum sibiricum. Chinese Journal of Applied Ecology, 26, 1145–1152 (In Chinese).Google Scholar
  41. Ruiz-Lozano, J. M., Gianinazzi, S., & Gianinazzi-Pearson, V. (1999). Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza, 4, 237–240.Google Scholar
  42. Singh, D. P., Srivastava, J. S., Bahadur, A., & Singh, S. (2004). Arbuscular mycorrhizal fungi induced biochemical changes in pea (Pisum sativum) and their effect on powdery mildew (Erysiphe pisi). Journal of Plant Diseases and Protection, 111, 266–272.Google Scholar
  43. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Longdon: Academic press.Google Scholar
  44. Snellgrove, R. C., Splittstoesser, W. E., Stribley, D. P., & Tinker, P. B. (2010). The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytologist, 92, 75–87.Google Scholar
  45. Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., & Berbee, M. L. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108, 1028–1046.Google Scholar
  46. Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology & Molecular Biology Reviews MMBR, 67, 491–502.Google Scholar
  47. Sutherland, B. L., & Hogland, J. H. (1989). Effect of ryegrass containing the endophyte Acremonium lolii, on the performance of associated white clover and subsequent crops. Proceedings of the New Zealand Grassland Association, 50, 265–269.Google Scholar
  48. Tian, P., Nan, Z. B., & Li, C. J. (2008). Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. European Journal of Plant Pathology, 122, 593–602.Google Scholar
  49. Van Wees, S. C., Van, D. E. S., & Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443–448.Google Scholar
  50. Vigo, C., Norman, J. R., & Hooker, J. E. (2000). Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology, 49, 509–514.Google Scholar
  51. Wang, J. B., Wang, H. F., Wang, H. Y., Ren, J., & Zhang, S. Y. (2009). Study on determination of jasmonic acid in plants by gas chromatography-mass spectrometry. Acta Agriculturae Boreali-Sinica, 24, 226–230.Google Scholar
  52. Wang, C. X., Li, X. L., Song, F. Q., Wang, G. Q., & Li, B. Q. (2012). Effects of arbuscular mycorrhizal fungi on fusarium wilt and disease resistance-related enzyme activity in cucumber seedling root. Chinese Journal of Eco-Agriculture, 20, 53–57.Google Scholar
  53. Wen, Z. H., Duan, T. Y., Christensen, M. J., & Nan, Z. B. (2015). Microdochium tabacinum, confirmed as a pathogen of alfalfa in Gansu Province, China. Plant Disease, 99, 87–92.Google Scholar
  54. Wright, D. P., Scholes, J. D., & Read, D. J. (1998). Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant, Cell and Environment, 21, 209–216.Google Scholar
  55. Zhang, X. X., Li, C. J., & Nan, Z. B. (2010). Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. Journal of Hazardous Materials, 175, 703–709.Google Scholar
  56. Zhang, X. X., Li, C. J., & Nan, Z. B. (2011). Effects of salt and drought stress on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Biochemical Systematics and Ecology, 39, 471–476.Google Scholar
  57. Zhang, X. X., Nan, Z. B., Li, C. J., & Gao, K. (2014). Cytotoxic effect of ergot alkaloids in Achnatherum inebrians infected by the Neotyphodium gansuense endophyte. Journal of Agricultural and Food Chemistry, 62, 7419–7422.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Yane Guo
    • 1
    • 2
  • Ping Gao
    • 1
    • 2
  • Fang Li
    • 1
    • 2
    • 3
  • Tingyu Duan
    • 1
    • 2
    • 3
    Email author
  1. 1.State Key Laboratory of Grassland Agro-EcosystemsLanzhou UniversityLanzhouChina
  2. 2.Key Laboratory of Grassland Livestock Industry InnovationMinistry of Agriculture and Rural AffairsBeijingChina
  3. 3.College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina

Personalised recommendations