A combination of target-site alterations, overexpression and enhanced efflux activity contribute to reduced azole sensitivity present in the Irish Zymoseptoria tritici population

  • Steven KildeaEmail author
  • Thies Marten-Heick
  • Jim Grant
  • Jeanne Mehenni-Ciz
  • Hilda Dooley


Control of septoria tritici blotch in Irish winter wheat crops has been reliant on the application of azoles fungicides for over a decade. The resulting intensive applications of azole fungicides have placed the Irish Zymoseptoria tritici populations under immense pressures to adapt. Evidence of this adaptation is observed in the decreasing sensitivity of the Irish population to the azole fungicide epoxiconazole, where the mean sensitivity has decreased almost 16x over the period 2006–2015. This decrease in sensitivity has occurred in a stepwise manner, with the sensitive proportion of the population being gradually replaced by those more resistant. The decrease in sensitivity was also accompanied by an increase in frequency of Z. tritici strains with an insert (120, 862 or 866 bp) in their CYP51 promoter region. Neither the 862 bp nor 866 bp inserts impacted the expression of CYP51 in either absence or presence of epoxiconcazole. Sequencing of the CYP51 gene in a sub-sample of the 2015 collection identified 25 different CYP51 haplotypes, the majority of which combined previously identified mutations, including V136A, I381V and S524 T. The presence of the 862 or 866 bp insert in the different strains, whilst not exclusive was strongly associated with specific CYP51 haplotypes. This was also reflected in their sensitivity to a range of azoles, most notably metconazole and tebuconazole. Strains with inserts in their MFS1 gene promoter region and identical in size to those known confer multiple drug resistance (MDR) phenotypes were also identified in the 2015 sub-collection. Although the frequencies of strains with those inserts known to confer moderate-high levels of MDR were extremely low, their presence further highlights the adaptability and continued erosion of azole sensitivity in the Irish Z. tritici population.


Zymoseptoria tritici Azole fungicides Fungicide resistance CYP51 CYP51 overexpression 14α-demethylase 



The research has been funded by Teagasc (RMIS 6236) and as part of the MonPESC project 11S113 funded by the Irish Department of Agriculture Food and the Marine as part of their Research Stimulus Fund.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Human and animal studies

This research contained within did not involve human participants or animals.

Supplementary material

10658_2019_1676_MOESM1_ESM.docx (334 kb)
ESM 1 (DOCX 333 kb)
10658_2019_1676_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 14.3 kb)


  1. Anon (2014). Pesticide usage in Ireland: Arable crops survey report 2012. Pesticide Control Division, DAFM, Backweston Campus, Cellbridge, Co. Kildea, Ireland.Google Scholar
  2. Blake, J. J., Gosling, P., Fraaije, B. A., Burnett, F. J., Knight, S. M., Kildea, S., & Paveley, N. D. (2018). Changes in field dose-response curves for demethylation inhibitors (DMI) and quinone outside inhibitor (QoI) fungicides against Zymoseptoria tritici, related to laboratory sensitivity phenotyping and genotyping assays. Pest Management Science, 74, 302–313.CrossRefGoogle Scholar
  3. Brunner, P. C., Stefanato, F. L., Mcdonald, B. A., (2008). Evolution of the CYP51 gene in Mycosphaerella graminicola: evidence for intragenic recombination and selective replacement. Molecular Plant Pathology 9, 305–316.Google Scholar
  4. Buitrago, C., Frey, R., Wullschleger, J., & Sierotzki, H. (2014). An update on the genetic changes in the CYP51 gene of Mycosphaerella graminicola and their relationship to DMI fungicide sensitivity. In: Deising HB, Fraaije B, Mehl A, Oerke EC, Sierotzki H, Stammler G (Eds). Modern Fungicides and Antifungal Compounds, Vol. VIII, pp. 103–110.Google Scholar
  5. Chassot, C., Hugelshofer, U., Sierotski, H., & Gisi, U. (2008). Sensitivity of CYP51 genotypes to DMI fungicides in Mycosphaerella graminicola. In H. W. Dehne, H. B. Deising, U. Gisi, K. H. Kuck, P. E. Russell, & H. Lyr (Eds.), Modern fungicides and antifungal compounds V (pp. 129–136). Braunschweig: BCPC, DPG.Google Scholar
  6. Cools, H. J., & Fraaije, B. A. (2013). Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Management Science, 69, 150–155.CrossRefGoogle Scholar
  7. Cools, H. J., Fraaije, B. A., Bean, T. P., Antoniw, J., & Lucas, J. A. (2007). Transcriptome profiling of the response of Mycosphaerella graminicola isolates to an azole fungicide using cDNA microarrays. Molecular Plant Pathology, 8, 639–651.CrossRefGoogle Scholar
  8. Cools, H. J., Bayon, C., Atkins, S., Lucas, J. A., & Fraaije, B. A. (2012). Overexpression of the sterol 14α-demethylase (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype. Pest Management Science, 68, 1034–1040.CrossRefGoogle Scholar
  9. Dooley, H., Shaw, M. W., Spink, J., & Kildea, S. (2016a). Effect of azole fungicide mixtures, alternations and dose on azole sensitivity in the wheat pathogen Zymoseptoria tritici. Plant Pathology, 65, 124–136.CrossRefGoogle Scholar
  10. Dooley, H., Shaw M. W., Spink, J., & Kildea, S. (2016b). The effect of succinate dehydrogenase inhibitor/azole mixtures on selection of Zymoseptoria tritici isolates with reduced sensitivity. Pest Management Science 72, 1150–1159Google Scholar
  11. Estep, L. K., Torriani, S. F. F., Zala, M., Anderson, N. P., Flowers, M. D., McDonald, B. A., Mundt, C. C., & Brunner, P. C. (2015). Emergence and early evolution of fungicide resistance in North America populations of Zymoseptoria tritici. Plant Pathology, 64, 961–971.CrossRefGoogle Scholar
  12. Heick, T. M., Justesen, A. F., & Jørgensen, L. N. (2017). Resistance of wheat pathogen Zymoseptoria tritici to DMI and QoI fungicides in the Nordic-Baltic region – A status. European Journal of Plant Pathology, 149, 669–682.CrossRefGoogle Scholar
  13. Huf, A., Rehfus, A., Lorens, K. H., Byrson, R., Voegele, R. T., & Stammler, G. (2018). Proposal for a new nomenclature for CYP51 haplotypes in Zymoseptoria tritici and analysis of their distribution in Europe. Plant Pathology In press, 67, 1706–1712. Scholar
  14. Jess, S., Kildea, S., Moody, A., Rennick, G., Murchie, A. K., & Cooke, L. R. (2014). European Union policy on pesticides: Implications for agriculture in Ireland. Pest Management Science, 70, 1646–1654.CrossRefGoogle Scholar
  15. Jørgensen, L. N., Matzen, N., Hansen, J. G., Semaskiene, R., Korbas, M., Danielewicz, J., Glazek, M., Maumene, C., Rodemann, B., Weigand, S., Hess, M., Blake, J., Clark, B., Kildea, S., Batailles, C., Ban, R., Havis, N., & Treikale, O. (2018). Four azoles’ profile in the control of septoria, yellow rust and brown rust in wheat across Europe. Crop Protection, 105, 16–27.CrossRefGoogle Scholar
  16. Kildea, S., Dooley, H., Phelan, S., Mehenni-Ciz, J., & Spink, J. (2016). Developing fungicide control Programmes for Septoria Tritici blotch in Irish winter wheat crops. In H. B. Deising, B. Fraaije, A. Mehl, E. C. Oerke, H. Sierotzki, & G. Stammler (Eds.), Modern fungicides and antifungal compounds (Vol. VIII, pp. 171–174).Google Scholar
  17. Kirikyali, N., Diez, P., Luo, J., Hawkins, N., & Fraaije, B. A. (2017). Azole and SDHI sensitivity status of Zymoseptoria tritici field populations sampled in France, Germany and the UK during 2015. In H. B. Deising, B. Fraaije, A. Mehl, E. C. Oerke, H. Sierotzki, & G. Stammler (Eds.), Modern fungicides and antifungal compounds (Vol. VIII, pp. 153–158).Google Scholar
  18. Leroux, P., & Walker, A. S. (2011). Multiple mechanisms account for resistance to sterol 14α-demethylase inhibitors in field isolates of Mycosphaerella graminicola. Pest Management Science, 67, 44–59.CrossRefGoogle Scholar
  19. McDonald, B. A., & Mundt, C. C. (2016). How knowledge of pathogen population biology informs management of septoria tritici blotch. Phytopathology, 106, 948–955.CrossRefGoogle Scholar
  20. Milgate, A., Adorada, D., Orchard, B., & Pattermore, J. (2016). First report of resistance to DMI fuingicides in Australian populations of the wheat pathogen Zymoseptoria tritici. Plant Disease, 100, 522.CrossRefGoogle Scholar
  21. Muller, P. Y., Janovjak, H., Miserez, A. R., & Dobbie Z. (2002). Processing of gene expression data generated by quantitative realtime RT-PCR. BioTechniques 32, 1372–1379.Google Scholar
  22. Mullins, J. G., Parker, J. E., Cools, H. J., Togawa, R. C., Lucas, J. A., Fraaije, B. A., Kelly, D. E., & Kelly, S. L. (2011). Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola. PLoS One, 6(6), e20973. Scholar
  23. Omrane, S., Sghyer, H., Audéon, C., Lanen, C., Duplaix, C., Walker, A. S., & Fillinger, S. (2015). Fungicide efflux and the MgMFS1 transporter contribute to the multidrug resistance phenotype in Zymosseptoria tritici field isolates. Environmental Microbiology, 17, 2805–2823.CrossRefGoogle Scholar
  24. Omrane, S., Audéon, C., Ignace, A., Duplaix, C., Aouini, L., Kema, G., Walker, A. S., & Fillinger, S. (2017). Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen Zymoseptoria tritici. mSphere, 2(5), e00393–e00317. Scholar
  25. Stergiopoulos, I., van Nistelrooy, J. G., Kema, G. H., & De Waard, M. A. (2003). Multiple mechanisms account for variation in base-line sensitivity to azole fungicides in field isolates of Mycosphaerella graminicola. Pest Management Science, 59, 1333–1343.CrossRefGoogle Scholar
  26. Stukenbrock EH & Dutheil JY (2017) Fine-scale recombination maps of fungal plant pathogens reveal dynamic recombination landscapes and intragenic hotspots. Genetics Early online December 20, 2017;
  27. Tyndal, J. D. A., Sabherwal, M., Sagatova, A. A., Keniya, M. V., Negroni, J., Wilson, R. K., Woods, M. A., Tietjen, K., & Monk, B. C. (2016). Structural and functional elucidation of yeast lanosterol 14α-demethylase in complex with agrochemical antifungals. PLoS One, 11(12), e0167485. Scholar
  28. Zhan, J., Stefanato, F. L., & McDonald, B. A. (2008). Selection for increased cyproconazole tolerance in Mycosphaerella graminicola through local adaptation and in response to host resistance. Molecular Plant Pathology, 7, 259–268.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Steven Kildea
    • 1
    Email author
  • Thies Marten-Heick
    • 2
  • Jim Grant
    • 3
  • Jeanne Mehenni-Ciz
    • 1
  • Hilda Dooley
    • 1
  1. 1.Crop Science Department, Teagasc Crops Environment and Land Use ProgramCarlowIreland
  2. 2.Department of AgroecologyAarhus UniversitySlagelseDenmark
  3. 3.Statistics and Applied Physics, Research Operations GroupAshtownIreland

Personalised recommendations