Biodiversity of Meloidogyne spp. from major tomato growing areas of Ethiopia

  • Awol SeidEmail author
  • Chemeda Fininsa
  • Tesfamariam M. Mekete
  • Toon Janssen
  • Wilfrida Decraemer
  • Wim M. L. Wesemael


Root-knot nematodes (Meloidogyne spp.) are among the biotic factors that limit tomato production worldwide. The objectives of this study were to assess the distribution and identify Meloidogyne spp. and associated problems from major tomato growing areas of Ethiopia. A total of 212-rhizosphere soil and 123 root samples were sampled from 40 localities during 2012/13 growing season. A total of 646 respondents participated in the questionnaire to assess knowledge and practice of farmers and factors associated with RKN damage on tomato. Out of the 212 soil samples collected, 47.2% were found infested by various Meloidogyne species 8 weeks after the start of the bioassay test. Out of the 123 root samples collected, 65% had root galls. The highest prevalence (100%) of RKN was found on samples collected from Adami Tullu, Babile, Erer Gota, Hurso, Jittu, Tikur Wuha, Tepo Choronke, Zeway and Koka. The highest incidence (100%) of RKN was found from Adami Tullu, Jara Weyo, Babile, Erer Gota, Hurso, Jittu, Tikur Wuha, Tony farm, Tepo Choronke, Zeway and Koka localities based on direct observation of galls on collected root samples. Out of the 646 respondents, 43.3% reported to have RKN damage symptoms when shown the symptoms while 56.7% of them did not report damage. The highest significant effect on the dependent variable RKN damage on tomato roots comes from the previous crop, soil texture, awareness about RKN and source of irrigation water used. The presence of Meloidogyne incognita, M. javanica, M. arenaria and M. hapla on tomato was confirmed using a combination of molecular and biochemical identification tools. Five isolates of Meloidogyne spp. were not properly identified and could be new species. The two tropical species, M. incognita (48.4%) and M. javanica (41.2%) were the most prevalent species. Both species were also co-infesting tomato plants. Meloidogyne hapla was detected for the first time in an open tomato production farmer’s field at ‘Zeway’ locality with 1620 m.a.s.l. elevation. The occurrence of these Meloidogyne species alone, or in mixed populations from samples collected, clearly shows that RKN are widespread in major tomato growing areas of Ethiopia. In the near future, the economic importance of M. arenaria and M. hapla on tomato production in Ethiopian agriculture should be investigated.


Awareness Biodiversity Distribution Meloidogyne hapla Tomato 



This research was financially and technically supported by VLIR-UOS (ICP-PhD Scholarship) from Belgium.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Human and animal rights

The research does not include any human or animal trials/subjects.

Ethical approval

The authors bear all ethical responsibilities for this research and manuscript.

Supplementary material

10658_2019_1674_MOESM1_ESM.docx (50 kb)
ESM 1 (DOCX 50 kb)


  1. Adam, M. A. M., Phillips, M. S., & Blok, V. C. (2007). Molecular diagnostic key for identification of single juveniles of seven common economically important species of root-knot nematode (Meloidogyne spp.). Plant Pathology, 56, 190–197.CrossRefGoogle Scholar
  2. Balem, T. (2008). Response of tomato cultivars differing in growth habit to nitrogen and phosphorus fertilizers and spacing on vertisol in Ethiopia. Acta Agriculturae Slovenica, 91, 103–119.Google Scholar
  3. Barbary, A., Djian-Caporalino, C., Palloix, A., & Castagnone-Sereno, P. (2015). Host genetic resistance to root-knot nematodes, Meloidogynespp., in Solanaceae: from genes to the field. Pest Management Science, 71(12), 1591–1598.CrossRefGoogle Scholar
  4. Barker, K. R. (1985). Nematode extraction and bioassays. In: Barker, K. R., Carter, C.C. and Sasser, J. N. (eds). North Carolina State University Graphics. An Advanced Treatise on Meloidogyne, 2, 19–35.Google Scholar
  5. Blok, V. C., & Powers, T. O. (2009). Biochemical and molecular identification. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 98–118). Wallingford: CAB International.CrossRefGoogle Scholar
  6. Blok, V. C., Phillips, M. S., & Fargette, M. (1997). Comparison of sequences from the ribosomal DNA intergenic region of Meloidogyne mayaguensis and other major tropical root-knot nematodes. Journal of Nematology, 29, 16–22.Google Scholar
  7. Braun-Kiewnick, A., Viaene, N., Folcher, L., Ollivier, F., Anthoine, G., Niere, B., Sapp, M., van de Vossenberg, B., Toktay, H., & Kiewnick, S. (2016). Assessment of a new qPCR tool for the detection and identification of the root-knot nematode Meloidogyne enterolobii by an international test performance study. European Journal of Plant Pathology, 144, 97–108.CrossRefGoogle Scholar
  8. Bridge, J., Nape, O., & Namaganda, J. (1991). The root-knot nematode, Meloidogyne incognita, causing damage to cassava in Uganda. Afro-Asian Journal of Nematology, 1, 116–117.Google Scholar
  9. CABI (2002). Meloidogyne incognita. Distribution maps of plant diseases. Wallingford: CAB International: Map No. 854.Google Scholar
  10. Carneiro, R. M. D. G., Almeida, M. R. A., & Quénéhervé, P. (2000). Enzyme phenotypes of Meloidogyne spp. isolates. Nematology, 2, 645–654.CrossRefGoogle Scholar
  11. Chitwood, B. G. (1949). Root-knot nematodes-part I: A revision of the genus Meloidogyne Goeldi, 1887. Proceedings of the Helminthological Society of Washington, 16, 90–104.Google Scholar
  12. Coyne, D. (2009). Pre-empting plant-parasitic nematode losses on banana in Africa: which species do we target? Acta Horticulturae, (828), 227–236.Google Scholar
  13. Coyne, D. L., Talwana, H. A. L., & Maslen, N. R. (2003). Plant-parasitic nematodes associated with root and tuber crops in Uganda. African Plant Protection, 9, 87–98.Google Scholar
  14. Daykin, M. E., & Hussey, R. S. (1985). Staining and histopathological techniques in nematology, in: An advanced treatise on Meloidogyne, volume II methodology, ed. by Barker KR, Carter CC and Sasser JN. North Carolina State University Graphics, Raleigh, pp. 39–48.Google Scholar
  15. De Ley, P., Felix, M. A., Frisse, L. M., Nadler, S. A., Sternberg, P. W., & Thomas, W. K. (1999). Molecular and morphological characterization of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology, 1, 519–612.Google Scholar
  16. De Waele, D., & Elsen, A. (2007). Challenges in tropical plant nematology. Annual Review of Phytopathology, 45, 457–485.CrossRefGoogle Scholar
  17. Esbenshade, P., & Triantaphyllou, A. (1985). Use of enzyme phenotypes for identification of Meloidogyne species. Journal of Nematology, 17, 6–20.Google Scholar
  18. Esbenshade, P. R., & Triantaphyllou, A. C. (1987). Enzymatic relationships and evolution in the genus Meloidogyne (nematoda: Tylenchida). Journal of Nematology, 19, 8–18.Google Scholar
  19. FAO (2013). Statistical database of the Food and Agricultural Organization of the United Nations. Food and Agricultural organization (FAO), Room, Italy accessed through on 12 August 2016.
  20. Gemechis, A. O., Struik, P., & Emana, B. (2012). Tomato production in Ethiopia: constraints and opportunities (Abstract). Accessed 13 July 2016.
  21. Golden, A. M., O’Bannon, J. H., Santo, J. S., & Finley, A. M. (1980). Description and SEM observations of Meloidogyne chitwoodi n. sp. (Meloidogynidae). A root-knot nematode on potato in the Pacific Northwest. Journal of Nematology, 12, 319–327.Google Scholar
  22. Handoo, Z. A., Nyczepir, A. P., Esmenjaud, D., van der Beek, J. G., Castagnone-Sereno, P., Carta, L. K., Skantar, A. M., & Higgins, J. A. (2004). Morphological, molecular, and differential-host characterization of Meloidogyne floridensis n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitizing Peach in Florida. Journal of Nematology, 36(1), 20–35.CrossRefGoogle Scholar
  23. Handoo, Z. A., Skantar, A. M., Carta, L. K., & Erbe, E. F. (2005). Morphological and molecular characterization of a new root-knot nematode, Meloidogyne thailandica n.sp. (Nematoda: Meloidogynidae), parasitizing Ginger (Zingiber sp.). Journal of Nematology, 37(3), 343–353.Google Scholar
  24. Hartmann, K. M., & Sasser, J. N. (1985). Identification of Meloidogyne species on the basis of differential host test and perineal pattern morphology. In Barker, K. R., Carter, C. C., Sasser, J. N. editors. An advanced treatise on Meloidogyne. North Carolina State University Graphics, Raleigh, North Carolina: Methodology. A cooperative publication of the Department of Plant Pathology and the United States Agency for International Development Volume II, 69–77.Google Scholar
  25. Holterman, M., Van Der Wurff, A., Van Den Elsen, S., Van Megen, H., Bongers, T., Holovachov, O., Bakker, J., & Helder, J. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution, 23, 1792–1800.CrossRefGoogle Scholar
  26. Hooper, D., Hallmann, J., & Subbotin, S. (2005). Extraction, processing and detection of plant and soil nematodes. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 53–86). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  27. Hunt, D. J., & Handoo, Z. A. (2009). Taxonomy, identification and principal species. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 55–97). Wallingford: CAB International.CrossRefGoogle Scholar
  28. Hussey, R. S., & Barker, K. R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Report, 57, 1025–1028.Google Scholar
  29. IITA. (1981). Proceedings of the Third Research Planning Conference on Root-knot Nematodes, Meloidogyne spp. Ibadan: IITA.Google Scholar
  30. Janssen, T., Karssen, G., Verhaeven, M., Coyne, D., & Bert, W. (2016). Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Scientific Reports, 6, 22591.CrossRefGoogle Scholar
  31. Joseph, S., Mekete, T., Danquah, W. B., & Noling, J. (2016). First report of Meloidogyne haplanaria infecting Mi-resistant tomato plants in Florida and its molecular diagnosis based on mitochondrial haplotype. Plant Diseases, 100, 1438–1445.CrossRefGoogle Scholar
  32. Karssen, G. (1996). Description of Meloidogyne fallax n. sp. (Nematoda: Heteroderidae), a root-knot nematode from the Netherlands. Fundamental and Applied Nematology, 19(6), 593–599.Google Scholar
  33. Karssen, G., van Hoenselaar, T., Verkeberk-Bakker, B., & Janssen, R. (1995). Species identification of cyst and root-knot nematodes from potato by electrophoresis of individual females. Electrophoresis, 16, 105–109.CrossRefGoogle Scholar
  34. Karssen, G., Wesemael, W., & Moens, M. (2013). Root-knot nematodes. In P. Perry & M. Moens (Eds.), Plant nematology (2nd ed., pp. 74–108). Wallingford: CAB International.Google Scholar
  35. Kimani, I. M., Muthamia, J. M., & Otaye, D. O. (2015). Identification of Meloidogyne species attacking chickpeas in Nakuru County, Kenya. Asian Journal of Science and Technology, 6, 1829–1832.Google Scholar
  36. Landa, B. B., Rius, J. E. P., Vovlas, N., Carneiro, R. M. D. G., Maleita, C. M. N., Abrantes, I. M. d. O., & Castillo, P. (2008). Molecular characterization of Meloidogyne hispanica (Nematoda, Meloidogynidae) by phylogenetic analysis of genes within the rDNA in Meloidogyne spp. Plant Disease, 92, 1104–1110.CrossRefGoogle Scholar
  37. Lemma, G. (1994). Research on fruit crop disease. In: Edward, H. & Lemma, D. (eds). Proceedings of the second national horticultural workshop of Ethiopia, 1–3 December, Addis Ababa, Ethiopia, pp. 232–242.Google Scholar
  38. Liao, L., & Zhang, S. (2014). Meloidogyne hapla isolate HBXT-1 28S ribosomal RNA gene, partial sequence. Deposited in genebankGoogle Scholar
  39. Maina, J. M., Waceke, J. W., & Kariuki, J. M. (2010). Plant-parasitic nematodes associated with cabbages in Nyandarua and Embu Districts. In 12 th KARI Biennial Scientific Conference proceedings (pp. 613–619). Nairobi: Kenya Agricultural Research Institute.Google Scholar
  40. Mandefro, W., & Dagne, K. (2000a). Morphological variation of root-knot nematode populations from Ethiopia. Pest Management Journal of Ethiopia, 4, 19–28.Google Scholar
  41. Mandefro, W., & Dagne, K. (2000b). Cytogenetic and esterase isozyme variation of root-knot nematode populations from Ethiopia. African Journal of Plant Protection, 10, 39–47.Google Scholar
  42. Mandefro, W., & Mekete, T. (2002). Root-knot nematodes on vegetable crops in Central and Western Ethiopia. Pest Management Journal of Ethiopia, 6, 37–44.Google Scholar
  43. McClure, M. A., Nischwitz, C., Skantar, A. M., Schmitt, M. E., & Subbotin, S. A. (2012). Root-knot nematodes in golf course greens of the western United States. Plant Diseases, 96, 635–647.CrossRefGoogle Scholar
  44. Mekete, T., Mandefro, W., & Greco, N. (2003). Relationship between initial population densities of Meloidogyne javanica and damage to pepper and tomato in Ethiopia. Nematologia Mediterranea, 31, 169–171.Google Scholar
  45. Meressa, B.-H., Heuer, H., Dehne, H. W., & Hallmann, J. (2014). First report of the root-knot nematode Meloidogyne hapla parasitizing roses in Ethiopia. Plant Disease, 98, 1286.CrossRefGoogle Scholar
  46. Meressa, B.-H., Heuer, H., Dehne, H. W., & Hallmann, J. (2015). Molecular and morphological characterization of Meloidogyne hapla populations from Ethiopia. Russian Journal of Nematology, 23, 1–20.Google Scholar
  47. Moleleki, L. N., & Onkendi, E. M. (2013). Distribution and genetic diversity of root-knot nematodes (Meloidogyne spp.) in potatoes from South Africa. Plant Pathology, 62, 1184–1192.CrossRefGoogle Scholar
  48. Mwesige, R., Seid, A., & Wesemael, W. (2016). Root-knot nematodes on tomatoes in Kyenjojo and Masaka districts in Uganda. African Journal of Agricultural Research, 11, 3598–3606.CrossRefGoogle Scholar
  49. Naz, I., Juan, E. P. R., Blok, V., Saifullah, A. S., & Ahmed, M. (2012). Prevalence, incidence and molecular identification of root-knot nematodes of tomato in Pakistan. African Journal of Biotechnology, 11, 16546–16556.Google Scholar
  50. Nono-Womdim, R., Swai, I. S., Mrosso, L. K., Chadha, M. L., & Opeña, R. T. (2002). Identification of root-knot nematode species occurring on tomatoes in Tanzania and resistant lines for their control. Plant Diseases, 86, 127–130.CrossRefGoogle Scholar
  51. O’Bannon, J. H. (1975). Nematode survey. FAO Report. Ethiopia Mimeograph, Institute of Agricultural Research. Rome, Italy, FAO.Google Scholar
  52. Onkendi, E. M., Kariuki, G. M., Marais, M., & Moleleki, L. N. (2014). The threat of root-knot nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathology, 63, 727–737.CrossRefGoogle Scholar
  53. Park, N. S., Kang, H. I., Ko,Y.J., Li, L. & Choi, I. S. (2014) Meloidogyne hapla strain SBS1 28S ribosomal RNA gene, partial sequence. Deposited in genebankGoogle Scholar
  54. Powers, T. O., Mullin, P. G., Harris, T. S., Sutton, L. A., & Higgins, R. S. (2005). Incorporating molecular identification of Meloidogyne spp. into a large-scale regional nematode survey. Journal of Nematology, 37, 226–235.Google Scholar
  55. Rice, R. P., Rice, L. W., & Tindall, H. D. (1987). Fruit and vegetable production in Africa (p. 7). London 371: Macmillan Publishers.Google Scholar
  56. Seid, A. Fininsa, C., Mekete, T.M., Decraemer, W. & Wesemael, W.M.L. (2016). Biodiversity of Root-knot Nematodes (Meloidogyne spp.) associated with Tomato and Characterization and Screening of Tomato Genotypes against Meloidogyne spp. From Ethiopia. PhD dissertation, Gent University, Belgium.Google Scholar
  57. Shimeles, A. (2000). Research achievement on variety development and seed production of vegetable crops in Ethiopia (pp. 112). Ethiopia: Nazret Research Center, Nazret.Google Scholar
  58. Skantar, A.M., Carta, L.K. & Handoo, Z.A. (2008). Molecular and Morphological Characterization of an Unusual Meloidogyne arenaria Population from Traveler’s Tree, Ravenala madagascariensis. Journal of Nematology, 40(3), 179–189.Google Scholar
  59. Subbotin, S. A., Sturhan, D., Chizhov, V., Vovlas, N., & Baldwin, J. G. (2006). Phylogenetic analysis of Tylenchida Thorne, 1949 as inferred from D2 and D3 expansion fragments of the 28S rRNA gene sequences. Nematology, 8, 455–474.Google Scholar
  60. Tadele, T., & Mengistu, H. (2000). Distribution of Meloidogyne incognita (root-knot nematode) in ssome vegetable fields in eastern Ethiopia. Pest Management Journal of Ethiopia, 4, 77–84.Google Scholar
  61. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefGoogle Scholar
  62. Taylor, A. L., Sasser, J. N., & Raleigh, N. C. (1978). Biology, identification and control of root-knot nematodes (Meloidogyne species). N.C. State University Graphics.Google Scholar
  63. Waeyenberge, L., Viaene, N., & Moens, M. (2009). Species specific duplex PCR for the detection of Pratylenchus penetrans. Nematology, 11, 847–857.CrossRefGoogle Scholar
  64. Wang, Y., Bao, Z., Zhu, Y. & Hua, J. (2009). Analysis of temperature modulation of plant defense against biotrophic microbes. Molecular Plant-Microbe Interactions, 22(5), 498–506.
  65. Whitehead, A. G. (1969). The distribution of root-knot nematodes (Meloidogyne spp.) in tropical Africa. Nematologica, 15, 315–333.CrossRefGoogle Scholar
  66. Wishart, J., Phillips, M. S., & Blok, V. C. (2002). Ribosomal intergenic spacer: apolymerase chain reaction diagnostic for Meloidogyne chitwoodi, M. fallax, and M. hapla. Phytopathology, 92, 884–892.CrossRefGoogle Scholar
  67. Yang, B., & Eisenback, J. D. (1983). Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology, 15, 381–391.Google Scholar
  68. Zijlstra, C., Donkers-Venne, D. T. H. M., & Fargette, M. (2000). Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterized amplified region (SCAR) based PCR assays. Nematology, 2, 847–853.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Awol Seid
    • 1
    Email author
  • Chemeda Fininsa
    • 1
  • Tesfamariam M. Mekete
    • 2
  • Toon Janssen
    • 3
  • Wilfrida Decraemer
    • 3
    • 4
  • Wim M. L. Wesemael
    • 3
    • 5
    • 6
  1. 1.College of Agriculture and Environmental Sciences, School of Plant Sciences, Plant Protection ProgramHaramaya UniversityDire DawaEthiopia
  2. 2.Entomology and Nematology DepartmentUniversity of FloridaGainesvilleUSA
  3. 3.Faculty of Sciences, Department of Biology, Nematology UnitGhent UniversityGhentBelgium
  4. 4.Royal Belgian Institute of Natural SciencesBrusselsBelgium
  5. 5.Flanders Research Institute for Agriculture, Fisheries and Food (ILVO)MerelbekeBelgium
  6. 6.Faculty of Bioscience Engineering, Laboratory for AgrozoologyGhent UniversityGhentBelgium

Personalised recommendations