Horizontal and vertical droplet dispersion mimicking soybean - Septoria glycines pathosystem

  • Álvaro Manuel Rodrigues AlmeidaEmail author
  • Rubson Natal Ribeiro Sibaldelli
  • Ivani de Oliveira Negrão Lopes
  • Maria Cristina Neves de Oliveira
  • José Renato Bouças Farias


The horizontal and vertical dispersion of droplets was assessed aiming at studying influence of their numbers and distances on spread of spores of Septoria glycines Hemmi simulating its pathosystem with soybean [Glycine max (L.) Merrill] plants. Two drop diameters (1.8 mm and 3.4 mm) were assessed under two soil conditions: bare soil and soil covered with wheat straw. Results showed that larger drops had greater effect on producing droplets than smaller drops. The number of horizontally dispersed droplets increased with increase on number of drops assessed (5, 10, or 20 drops) on both diameters used; as well as for both soil conditions assessed. The number of droplets vertically dispersed was assessed using only 5 and 10 drops, and increased as drop size increased; mainly under bare soil condition. Twenty drops were also assessed, but such water amount drenched the soil and did not allow recording vertical dispersal of droplets. The epidemic caused by splashes of droplets on bare soil caused infection on a larger number of plants than the epidemic caused by splashes on soil covered with wheat straw. These findings confirm why this is one of the first soybean disease to occur in the field and show in vivo the upward dislocation of S. glycines spores for the first time. Such upward movement was based on the following infection levels: 1 = no infection; 2 = up to 15% of the leaf infected; 3 = up to 30% of leaf infected; 4 = up to 45% of leaf infected; and 5 = more than 60% of the leaf infected.


Rain drops Epidemiology Brown spot Spore displacement Simulation 



The authors are grateful to Dr. Carlos Caio Machado, Dr. Regina M.V.B.C. Leite and Dr. Norman Neumaier for their critical review of this manuscript, and to Luiz C. Benato and Nilson V. Souza for their valuable help. The authors also would like to thank the anonymous reviewers for their help.


  1. Amorim, R. S. S., Silva, D. D., Pruski, F. F., & Matos, A. T. (2001). Influência da declividade do solo e da energia cinética de chuvas simuladas no processo de erosão entre sulcos. Revista Brasileira de Engenharia Agrícola e Ambiental, 5, 124–130.CrossRefGoogle Scholar
  2. Bassette, C., & Bussière, F. (2008). Partitioning of splash and storage during raindrop impacts on banana leaves. Agricultural and Forest Meteorology, 148, 991–1004.CrossRefGoogle Scholar
  3. Brancalião, S. R., & Moraes, M. H. (2008). Alterações de alguns atributos físicos e das frações húmicas de um Nitossolo vermelho na sucessão milheto-soja em sistema plantio direto. Revista Brasileira de Ciência do Solo, 32, 393–404.CrossRefGoogle Scholar
  4. Brandão, V. S., Silva, D. D., Ruiz, H. A., Pruski, F. F., Schaefer, C. E. G. R., Martinez, M. A., & Silva, E. O. (2007). Perdas de solo e caracterização física e micromorfológica de crostas formadas em solos sob chuva simulada. Engenharia Agrícola, 27, 129–138.CrossRefGoogle Scholar
  5. Caton, P. G. F. (1966). A study of raindrop-size distributions in the free atmosphere. Quarterly Journal of the Royal Meteorological Society, 92, 15–30.CrossRefGoogle Scholar
  6. Duley, F. L. (1940). Surface factors affecting the rate of intake of water by soils. Soil Science Society of America Proceedings, 4, 60–64.CrossRefGoogle Scholar
  7. Fehr, W. R., Caviness, C. E., Burmood, D. T., & Pennington, J. S. (1971). Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science, 11, 929–931.CrossRefGoogle Scholar
  8. Fitt, B. D. L., & Lysandrou, M. (1984). Studies on mechanisms of splash dispersal of spores, using Pseudocercosporella herpotrichoides spores. Journal of Phytopathology, 111, 323–331.CrossRefGoogle Scholar
  9. Fitt, B. D. L., McCartney, H. A., & Walklate, P. J. (1989). The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology, 27, 241–270.CrossRefGoogle Scholar
  10. Geagea, L., Huber, L., & Sache, I. (1999). Dry-dispersal and rain-splash of brown (Puccinia recondita f.sp. tritici) and yellow (P. striiformis) rust spores from infected wheat leaves exposed to simulated raindrops. Plant Pathology, 48, 472–482.CrossRefGoogle Scholar
  11. Ghadiri, H., & Payne, D. (1979). Raindrop impact and soil splash. In R. Lal & D. J. Greenland (Eds.), Soil physical properties and crop production in the tropics (pp. 95–104). Chichester: Wiley.Google Scholar
  12. Grove, G. G., Madden, L. V., & Ellis, M. A. (1985). Splash dispersal of Phytophthora cactorum from infected strawberry fruit. Phytopathology, 75, 611–615.CrossRefGoogle Scholar
  13. Hardy, K. R. (1963). The development of raindrop-size distributions and implications related to the physics of precipitation. Journal of the Atmospheric Sciences, 20, 299–312.CrossRefGoogle Scholar
  14. Hobbs, P. V., & Kezweeny, A. J. (1967). Splashing of a water drop. Science, 155, 1112–1114.CrossRefGoogle Scholar
  15. Macdonald, O. C., & McCartney, H. A. (1987). Calculation of splash droplet trajectories. Agricultural and Forest Meteorology, 39, 95–110.CrossRefGoogle Scholar
  16. Madden, L. V. (1992). Rainfall and the dispersal of fungal spores. Advances in Plant Pathology, 8, 39–79.Google Scholar
  17. Madden, L. V. (1997). Effects of rain on splash dispersal of fungal pathogens. Canadian Journal of Plant Pathology, 19, 225–230.CrossRefGoogle Scholar
  18. Ntahimpera, N., Madden, L. V., & Wilson, L. L. (1997). Effect of rain distribution alteration on splash dispersal of Colletotrichum acutatum. Phytopathology, 87, 649–655.CrossRefGoogle Scholar
  19. Ntahimpera, N., Ellis, M. A., Wilson, L. L., & Madden, L. V. (1998). Effects of a cover crop on splash dispersal of Colletotrichum acutatum conidia. Phytopathology, 88, 536–543.CrossRefGoogle Scholar
  20. Reynolds, K. M., Madden, L. V., Reichard, D. L., & Ellis, M. A. (1989). Splash dispersal of Phytophthora cactorum from infected strawberry fruit by simulated canopy drip. Phytopathology, 79, 425–432.CrossRefGoogle Scholar
  21. Silva, C. G., Alves Sobrinho, T., Vitorino, A. C. T., & Carvalho, D. F. (2005a). Atributos físicos, químicos e erosão entressulcos sob chuva simulada, em sistemas de plantio direto e convencional. Engenharia Agrícola, 25, 144–153.CrossRefGoogle Scholar
  22. Silva, D. D., Pruski, F. F., Schaefer, C. E. G. R., Amorim, R. S. S., & Paiva, K. W. N. (2005b). Efeito da cobertura nas perdas de solo em um Argissolo Vermelho-Amarelo utilizando simulador de chuva. Engenharia Agrícola, 25, 409–419.CrossRefGoogle Scholar
  23. Stedman, O. J. (1980). Splash droplet and spore dispersal studies in field beans (Vicia faba L). Agricultural Meteorology, 21, 111–127.CrossRefGoogle Scholar
  24. Tukey, J. (1949). Comparing individual means in the analysis of variance. Biometrics, 5, 99–114.CrossRefGoogle Scholar
  25. Viegas, E. M., Maffia, L. A., Mizubuti, E. S. G., & Silva, D. (2001). Dispersão de Colletotrichum gloeosporioides pela água. Fitopatologia Brasileira, 26(supl), 392.Google Scholar
  26. Walklate, P. J. (1989). Vertical dispersal of plant pathogens by splashing. Part I: The theoretical relationship between rainfall and upward rain splash. Plant Pathology, 38, 56–63.CrossRefGoogle Scholar
  27. Yang, X., Madden, L. V., Reichard, D. L., Wilson, L. L., & Ellis, M. A. (1992). Splash dispersal of Colletotrichum acutatum and Phytophthora cactorum from strawberry fruit by single drop impactions. Phytopathology, 82, 332–340.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Álvaro Manuel Rodrigues Almeida
    • 1
    Email author
  • Rubson Natal Ribeiro Sibaldelli
    • 1
  • Ivani de Oliveira Negrão Lopes
    • 1
  • Maria Cristina Neves de Oliveira
    • 1
  • José Renato Bouças Farias
    • 1
  1. 1.Embrapa - Brazilian Agricultural Research CorporationEmbrapa SojaLondrinaBrazil

Personalised recommendations