Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 3, pp 849–868 | Cite as

Morphological and molecular identification of fungi associated with South African apple core rot

  • Elaine Basson
  • Julia C. Meitz-HopkinsEmail author
  • Cheryl L. Lennox
Article
  • 83 Downloads

Abstract

Core rot is a major contributor to postharvest losses in apples worldwide. Pathogens most commonly associated with the disease are Alternaria spp. and Penicillium spp. Although both genera show specific morphological characteristics, they can be difficult to identify to species level. In this study, Alternaria spp. (49) and Penicillium spp. isolates (97), associated with pre- and post-harvest apple core rot-symptoms and isolates from potential inoculum sources were identified using molecular methods. Initially, dry core rot causing Alternaria spp. were identified morphologically in an average of 70% of infected fruit pre-harvest and 32% postharvest. Furthermore, 78% of mouldy core rot causing pathogens were identified as Alternaria spp. preharvest and 40% postharvest. Wet core rot was associated with Penicillium spp. in 64% of cases preharvest and 36% postharvest. Species identity of a selection of samples was confirmed using the endopolygalacturonase (endo-PG) gene, the ITS region, and the anonymous genomic regions (OPA1–3, 2–1), which resulted in the identification of A. alternata, A. arborescens, A. dumosa, A. eureka and A. tenuissima. Penicillium species were identified through ITS sequencing and partial beta-tubulin polymerase chain reaction – random fragment length polymorphisms (PCR-RFLP) for the samples collected from wet core rot symptoms. Phylogenetic analyses separated the Alternaria spp. into five clades, including three separate clades for A. alternata, A. tenuissima and A. arborescens, respectively. This is the first report of A. eureka and P. polonicum as potential core rot pathogens. Phylogenetic analysis identified Penicillium ramulosum and P. expansum as the most commonly occurring species associated with WCR symptoms.

Keywords

Alternaria- and Penicillium species identification Multi-gene phylogeny Postharvest pathogens 

Notes

Acknowledgments

This study was financially supported through project and MSc bursary funding by HORTGRO and the National Research Foundation (THRIP). We would like to thank the South African fruit growers in the Witzenberg Valley for participation in this study.

Supplementary material

10658_2018_1601_MOESM1_ESM.pdf (293 kb)
ESM 1 (PDF 292 kb)
10658_2018_1601_MOESM2_ESM.docx (30 kb)
ESM 2 (DOCX 29 kb)
10658_2018_1601_MOESM3_ESM.docx (29 kb)
ESM 3 (DOCX 28 kb)

References

  1. Alfaro, C., Urios, A., González, M. C., Moya, P., & Blanco, M. (2003). Screening for metabolites from Penicillium novae-zeelandiae displaying radical-scavenging activity and oxidative mutagenicity: Isolation of gentisyl alcohol. Mutation Research, 539, 187–194.Google Scholar
  2. Amiri, A., & Bompeix, G. (2005). Diversity and population dynamics of Penicillium spp. in apples in pre- and postharvest environments: consequences for decay development. Plant Pathology, 54, 74–81.Google Scholar
  3. Andersen, B., Sørensen, J. L., Nielsen, K. F., Gerrits-van den Ende, B., & de Hoog, S. (2009). A polyphasic approach to the taxonomy of the Alternaria infectoria specie-group. Fungal Genetics and Biology, 46, 642–656.Google Scholar
  4. Andrew, M., Peever, T. L., & Pryor, B. M. (2009). An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia, 101, 95–109.Google Scholar
  5. Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi (4th ed.). St. Paul: APS Press, The American Phytopathological Society.Google Scholar
  6. Berbee, M. L., Payne, B. P., Zhang, G., Roberts, R. G., & Turgeon, B. G. (2003). Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus Alternaria. Mycological Research, 107, 169–182.Google Scholar
  7. Çakir, E., & Maden, S. (2015). First report of Penicillium polonicum causing storage rots of onion bulbs in Ankara province, Turkey. New Disease Reports, 32, 24.  https://doi.org/10.5197/j.2044-0588.2015.032.024.Google Scholar
  8. Carpenter, J. B. (1942). Moldy core of apples in Wisconsin. Phytopathology, 32, 896–900.Google Scholar
  9. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GENBANK. Nucleic Acids Research, 44(Database issue), D67–D72. Published online 2015 Nov 20..  https://doi.org/10.1093/nar/gkv1276.Google Scholar
  10. Combrink, J. C., & Ginsburg, L. (1973). Core rot in Starking apples – A preliminary investigation into the origin and control. Deciduous Fruit Grower, 23, 16–19.Google Scholar
  11. Combrink, J. C., Kotzé, J. M., Wehner, F. C., & Grobbelaar, C. J. (1985). Fungi associated with core rot of Starking apples in South Africa. Phytophylactica, 17, 81–83.Google Scholar
  12. Combrink, J. C., Grobbelaar, C. J., & Visagie, T. R. (1987). Effect of diphenylamine emulsifiable concentrations on the development of wet core rot in Starking apples. Deciduous Fruit Grower, 37, 97–99.Google Scholar
  13. Conway, W. A. (1983). Trichoderma harzianum. A possible cause of apple decay in storage. Plant Disease Report, 67, 316–317.Google Scholar
  14. Cunningham, C. W. (1997). Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution, 14, 733–740.Google Scholar
  15. de Hoog, G. S., & Horré, R. (2002). Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses, 45, 259–276.Google Scholar
  16. de Hoog, G. S., & van den Ende, A. H. G. (1998). Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses, 41, 183–189.Google Scholar
  17. de Kock, S. L., Visagie, T. R., & Combrink, J. C. (1991). Control of core rot in Starking apples. Deciduous Fruit Grower, 41, 20–22.Google Scholar
  18. Ellis, M. A., & Barrat, J. G. (1983). Colonization of delicious apple fruits by Alternaria spp. and effect of fungicide sprays on moldy-core. Plant Disease, 67, 150–152.Google Scholar
  19. Farris, J. S., Källersjö, M., Kluge, A. G., & Bult, C. (1994). Testing significance of incongruence. Cladistics, 10, 315–319.Google Scholar
  20. Fazlikhani, L., & Soleimani, M. J. (2013). First report of Alternaria dumosa causing orange leaf spot disease in Iran. New Disease Reports, 27, 24.  https://doi.org/10.5197/j.2044-0588.2013.027.024 Accessed 3 March 2017.Google Scholar
  21. Frisvad, J. C., & Samson, R. A. (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium a guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology, 49, 1–174.Google Scholar
  22. Gao, L. L., Zhang, Q., Sun, X. Y., Jiang, L., Zhang, R., Sun, G. Y., Zha, Y. L., & Biggs, A. R. (2013). Etiology of moldy core, core browning, and core rot of Fuji apple in China. Plant Disease, 97, 510–516.Google Scholar
  23. Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.Google Scholar
  24. Harrison, C. J., & Langdale, J. A. (2006). A step by step guide to phylogeny reconstruction. The Plant Journal, 45, 561–572.Google Scholar
  25. Hong, C. X., Michailides, T. J., & Holtz, B. A. (2000). Mycoflora of stone fruit mummies in California orchards. Plant Disease, 84, 417–422.Google Scholar
  26. Hong, S. G., Liu, D., & Pryor, B. M. (2005). Restriction mapping of the IGS region in Alternaria spp. reveals variable and conserved domains. Mycological Research, 109, 87–95.Google Scholar
  27. Hong, S. G., Maccaroni, M., Figuli, P. J., Pryor, B. M., & Belisario, A. (2006). Polyphasic classification of Alternaria isolated from hazelnut and walnut fruit in Europe. Mycological Research, 110, 1290–1300.Google Scholar
  28. Houbraken, J., Frisvad, J. C., & Samson, R. A. (2011). Taxonomy of Penicillium section Citrina. Studies in Mycology, 70, 53–138.Google Scholar
  29. Isshiki, A., Akimitsu, K., Yamamoto, M., & Yamamoto, H. (2001). Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Molecular Plant-Microbe Interactions, 14, 749–757.Google Scholar
  30. Janisiewicz, W. J., Leverentz, B., Conway, W. S., Saftner, R. A., Reed, A. N., & Camp, M. J. (2003). Control of bitter rot and blue mold of apples by integrating heat and antagonist treatments on 1-MCP treated fruit stored under controlled atmosphere conditions. Postharvest Biology and Technology, 29, 129–143.Google Scholar
  31. Kang, J. C., Crous, P. W., Mchau, G. R. A., Serdani, S., & Song, S. M. (2002). Phylogenetic analysis of Alternaria spp. associated with apple core rot and citrus black rot in South Africa. Mycological Research, 106, 1151–1162.Google Scholar
  32. Katoh, K., & Toh, H. (2008). Recent developments in the MAFFT sequence alignment programme. Bioinformatics, 9, 286–298.Google Scholar
  33. Kim, Y. K., & Xiao, C. L. (2008). Distribution and incidence of Sphaeropsis rot in apple in Washington State. Plant Disease, 92, 940–946.Google Scholar
  34. Kou, L. P., Gaskins, V. L., Luo, Y. G., & Jurick II, W. M. (2014). First report of Alternaria tenuissima causing postharvest decay on apple fruit from cold storage in the United States. Plant Disease, 98(5), 690.Google Scholar
  35. Kusaba, M., & Tsuge, T. (1995). Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA. Current Genetics, 28, 491–498.Google Scholar
  36. Lawrence, D. P., Park, M. S., & Pryor, B. M. (2012). Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata. Mycological Progress, 11, 799–815.Google Scholar
  37. Lee, S. B., & Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A guide to methods and applications (pp. 282–287). San Diego: Academic Press.Google Scholar
  38. Leverentz, B., Conway, W. S., Janisiewicz, W. J., Saftner, R. A., & Camp, M. J. (2003). Effect of combining MCP treatment, heat treatment, and biocontrol on the reduction of postharvest decay of ‘golden delicious’ apples. Postharvest Biology and Technology, 27, 221–223.Google Scholar
  39. Lobuglio, K. F., Pitt, J. I., & Taylor, J. W. (1993). Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in the subgenus Biverticillium. Mycologia, 85, 592–604.Google Scholar
  40. Lobuglio, K. F., Pitt, J. I., & Taylor, J. W. (1994). Independent origins of the synnematous Penicillium species, P. duclauxii, P. clavigerum and P. vulpinum, as assessed by two ribosomal DNA regions. Mycological Research, 98, 250–256.Google Scholar
  41. Louw, J. P., & Korsten, L. (2014). Pathogenic Penicillium spp. on apple and pear. Plant Disease, 98(5), 590–598.Google Scholar
  42. Miller, P. M. (1959). Open calyx tubes as a factor contributing to carpel discoloration and decay of apples. Phytopathology, 49, 520–522.Google Scholar
  43. Morales, H., Marín, S., Rovira, A., Ramos, A. J., & Sanchis, V. (2007). Patulin accumulation in apples by Penicillium expansum during postharvest stages. Letters of Applied Microbiology, 44(1), 30–35.Google Scholar
  44. Niem, J., Miyara, I., Ettedgui, Y., Reuveni, M., Flaishman, M., & Pruisky, D. (2007). Core rot development in susceptibility of the seed locule to Alternaria alternata colonization. Phytopathology, 97, 1414–1421.Google Scholar
  45. Pavón, M. A., González, I., Pegels, N., Martín, R., & García, T. (2010). PCR detection and identification of Alternaria species-groups in processed foods based on the genetic marker Alt a 1. Food Control, 21, 1745–1756.Google Scholar
  46. Peever, T. L., Ibañez, A., Akimitsu, K., & Timmer, L. W. (2002). Worldwide phylogeography of the citrus brown spot pathogen, Alternaria alternata. Phytopathology, 92, 794–802.Google Scholar
  47. Peever, T. L., Su, G., Carpenter-Boggs, L., & Timmer, L. W. (2004). Molecular systematics of citrus-associated Alternaria species. Mycologia, 96, 119–134.Google Scholar
  48. Peever, T. L., Carpenter-Boggs, L., Timmer, L. W., Carris, L. M., & Bhatia, A. (2005). Citrus black rot is caused by phylogenetically distinct lineages of Alternaria alternata. Phytopathology, 95, 512–518.Google Scholar
  49. Pianzzola, M. J., Moscatelli, M., & Vero, S. (2004). Characterization of Penicillium isolates associated with blue mold on apple in Uruguay. Plant Disease, 88, 23–28.Google Scholar
  50. Pitt, J. I., & Hocking, A. D. (1997). Fungi and food spoilage (2nd ed.). Cambridge: Blackie Academic and Professional, University Press.Google Scholar
  51. Pratella, G. C., & Mari, M. (1993). Effectiveness of Trichoderma, Gliocladium and Paecilomyces in postharvest fruit protection. Postharvest Biology and Technology, 3, 49–56.Google Scholar
  52. Pryor, B. M., & Bigelow, D. M. (2003). Molecular characterization of Embellisia and Nimbya and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia, 95, 1141–1154.Google Scholar
  53. Pryor, B. M., & Gilbertson, R. L. (2000). Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. Mycological Research, 104, 1312–1321.Google Scholar
  54. Pryor, B. M., & Michailides, T. J. (2002). Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology, 92, 406–416.Google Scholar
  55. Rambaut, A. (2002). Sequence alignment editor version 2.0. Oxford: University of Oxford.Google Scholar
  56. Reuveni, M., & Prusky, D. (2007). Improved control of moldy-core decay (Alternaria alternata) in red delicious apple fruit by mixtures of DMI fungicides and captan. European Journal of Plant Pathology, 118, 349–357.Google Scholar
  57. Reuveni, M., & Sheglov, D. (2002). Effects of azoxystrobin, difenoconazole, polyoxin B (polar) and trifloxystrobin on germination and growth of Alternaria alternata and decay in red delicious apple fruit. Crop Protection, 21, 951–955.Google Scholar
  58. Reuveni, M., Sheglov, D., & Cohen, Y. (2003). Control of moldy-core decay in apple fruits of ß-aminobutyric acids and potassium phosphates. Plant Disease, 87, 933–936.Google Scholar
  59. Reuveni, M., Sheglov, N., Eshel, D., Prusky, D., & Ben-Arie, R. (2007). Virulence and the production of endo-1, 4-β-glucanase by isolates of Alternaria alternata involved in moldy core of apples. Phytopathology, 155, 50–55.Google Scholar
  60. Rharmitt, S., Ha, M., Hajjaj, H., Scordino, F., Giosa, D., Giuffrè, L., Barreca, S., Criseo, G., & Romeo, O. (2016). Molecular characterization of patulin producing and non-producing Penicillium species in apples from Morocco. International Journal of Food Microbiology, 217, 137–140.Google Scholar
  61. Sanderson, P. G., & Spotts, R. A. (1995). Postharvest decay of winter pear and apple fruit caused by species of Penicillium. Phytopathology, 85, 103–110.Google Scholar
  62. Seifert, K. A., Samson, R. A., DeWaard, J. R., Houbraken, J., Levesque, C. A., Moncalvo, J.-M., et al. (2007). Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences, 104, 3901–3906.Google Scholar
  63. Serdani, M., Crous, P. W., Holz, G., & Petrini, O. (1998). Endophytic fungi associated with core rot of apples in South Africa, with specific reference to Alternaria species. Sydowia, 50, 257–271.Google Scholar
  64. Serdani, M., Kang, J. C., Andersen, B., & Crous, P. W. (2002). Characterisation of Alternaria species-groups associated with core rot in South Africa. Mycological Research, 106, 561–569.Google Scholar
  65. Serra, R., Peterson, S., & Vena, A. (2008). Multilocus sequence identification of Penicillium species in cork bark during plank preparation for the manufacture of stoppers. Research in Microbiology, 159, 178–186.Google Scholar
  66. Shtienberg, D. (2012). Effects of host physiology on the development of core rot, caused by Alternaria alternata, in red delicious apples. Phytopathology, 102, 769–778.Google Scholar
  67. Simmons, E. G. (2007). Alternaria. An Identification Manual. Utrecht: CBS Fungal Biodiversity Centre.Google Scholar
  68. Skouboe, P., Frisvad, J. C., Taylor, J. W., Lauritsen, D., Boysen, M., & Rossen, L. (1999). Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycological Research, 103, 873–881.Google Scholar
  69. Spotts, R. A. (1990). Moldy core and core rot. In A. L. Jones & H. S. Aldwinckle (Eds.), Compendium of apple and pear diseases (pp. 29–30). St. Paul: APS Press, The American Phytopathological Society.Google Scholar
  70. Spotts, R. A., Holmes, R. J., & Washington, W. S. (1988). Factors affecting wet core rot of apples. Australasian Plant Pathology, 17, 53–57.Google Scholar
  71. Swofford, D. L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version (p. 4). Massachusetts: Sinauer Associates, Sunderland.Google Scholar
  72. Taylor, J. (1955). Apple black rot in Georgia and its control. Phytopathology, 45, 392–398.Google Scholar
  73. Theron, D. J., & Holz, G. (1991). Dry rot of potatoes caused by Gliocladium roseum. Plant Pathology, 40, 302–305.Google Scholar
  74. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.Google Scholar
  75. Van der Walt, L., Spotts, R. A., Visagie, C. M., Jacobs, K., Smit, F. J., & McLeod, A. (2010). Penicillium species associated with preharvest wet core rot in South Africa and their pathogenicity on apple. Plant Disease, 94, 666–675.Google Scholar
  76. Van der Walt, L., van der Walt, L., Spotts, R. A., Ueckermann, E. A., Smit, F. J., Jensen, T., & McLeod, A. (2011). The association of Tarsonemus mites (Acari: Heterostigmata) with different apple developmental stages and apple core rot diseases. International Journal of Acarology, 37(S1), 71–84.Google Scholar
  77. Vilanova, L., Teixidó, N., Torres, R., Usall, J., & Viñas, I. (2012). The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response. International Journal of Food Microbiology, 157(3), 360–367.  https://doi.org/10.1016/j.ijfoodmicro.2012.06.005.Google Scholar
  78. Vico, I., Gaskins, V., Duduk, N., Vasić, M., Yu, J. J., Peter, K. A., & Jurick, W. M. (2014). First report of causing blue mold on stored apple fruit in Serbia. Plant Disease, 98(10), 1430–1430.Google Scholar
  79. Volk, G. M., Chao, C. T., Norelli, J., Brown, S. K., Fazio, G., Peace, C., McFerson, J., Zhong, G.-Y., & Bretting, P. (2015). The vulnerability of US apple (Malus) genetic resources. Genetic Resources and Crop Evolution, 62, 765–794.Google Scholar
  80. Wenneker, M., Pham, K. T. K., Lemmers, M. E. C., de Boer, F. A., van der Lans, A. M., van Leeuwen, P. J., Hollinger, T. C., & Thomma, B. P. H. (2016). First report of Fusarium avenaceum causing wet core rot of ‘Elstar’ apples in the Netherlands. Plant Disease, 100, 1501.Google Scholar
  81. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A guide to methods and application (pp. 315–322). New York: Academic Press Inc.Google Scholar
  82. Woudenberg, J. H., Groenewald, J. Z., Binder, M., & Crous, P. W. (2013). Alternaria redefined. Studies in Mycology, 75(1), 171–212.Google Scholar
  83. Woudenberg, J. H. C., Seidl, M. F., Groenewald, J. Z., de Vries, M., Stielow, J. B., Thomma, B. P. H. J., & Crous, P. W. (2015). Alternaria section Alternaria: Species, formae speciales or pathotypes? Studies in Mycology, 82, 1–21.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Elaine Basson
    • 1
  • Julia C. Meitz-Hopkins
    • 1
    Email author
  • Cheryl L. Lennox
    • 1
  1. 1.Fruit and Pathology Research Programme, Department of Plant PathologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations