Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 3, pp 801–811 | Cite as

Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017

  • Antonín DreiseitlEmail author
Article

Abstract

Powdery mildew caused by the airborne fungus Blumeria graminis f. sp. hordei is one of the main diseases of barley (Hordeum vulgare) throughout the world. In Europe spring and winter barley is widely grown under high-input management and with European-bred varieties containing resistance genes to B. graminis f. sp. hordei. The pathogen is wind-borne and in Central Europe spores can be blown in from any direction. Thus, in this region directional selection can maintain and expand virulences arising from local mutations or introduced from other parts of the continent. In this paper, 309 isolates were studied and, based on the reaction to 32 differential varieties, assigned to 279 pathotypes (Simple index = 0.903). Complexity ranged from 5 to 18 virulences, where the most frequent (56) were isolates characterized by nine virulences. In 2016 and 2017, eight additional differential varieties revealed that the population was highly diverse and 226 isolates were represented by 224 pathotypes (Simple index = 0.982). This illustrates the importance of genetic recombination in the formation of this pathogen population. There was a gradual decrease in virulence frequencies to some resistances resulting in a reduced average virulence complexity from 11.30 in 2015 to 9.26 in 2017. The cause might be attributed to a decreased area of varieties with the particular resistances leading to a weakening of directional selection. New virulences to resistances contained in Camilla, Sara and E-388/01 were detected over the same period.

Keywords

Barley Hordeum vulgare Powdery mildew Resistance genes Virulence frequency 

Notes

Acknowledgments

The excellent technical assistance of Mrs. Dagmar Krejčířová is greatly appreciated. This study was funded by grand no. RO1117 supported by the Ministry of Agriculture of the Czech Republic.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

Human and animals rights

Research do not involve human participants nor animals.

Supplementary material

10658_2018_1593_MOESM1_ESM.doc (429 kb)
ESM 1 (DOC 429 kb)

References

  1. Brown, J. K. M. (2006). Surveys of variation in virulence and fungicide resistance and their application to disease control. In B. M. Cooke, D. G. Jones, & B. Kaye (Eds.), The epidemiology of plant diseases (2nd ed., pp. 81–115). Dordrecht.Google Scholar
  2. Brown, J. K. M. (2015). Durable resistance of crops to disease: A Darwinian perspective. Annual Review of Phytopathology, 53, 513–539.  https://doi.org/10.1146/annurev-phyto-102313-045914.Google Scholar
  3. Brown, J. K. M., & Jørgensen, J. H. (1991). A catalogue of mildew resistance genes in European barley varieties. In J. H. Jørgensen (Ed.), Integrated Control of Cereal Mildews: Virulence and Their Change (pp. 263–286). Roskilde: Risø National Laboratory.Google Scholar
  4. Brückner, F. (1982). Finding of powdery mildew (Erysiphe graminis DC. Var. hordei Marchal) race on barley: A race virulent to resistance genes Mla9 and Mla14. Ochrana Rostlin, 18, 101–105.Google Scholar
  5. Burdon, J. J., Zhan, J. S., Barrett, L. G., Papaix, J., & Thrall, P. H. (2016). Addressing the challenges of pathogen evolution on the world’s arable crops. Phytopathology, 106, 1117–1127.  https://doi.org/10.1094/PHYTO-01-16-0036-FI.Google Scholar
  6. Carson, M. L. (2011). Virulence in oat crown rust (Puccinia coronata f. sp. avenae) in the United States from 2006 through 2009. Plant Disease, 95, 1528–1534.  https://doi.org/10.1094/PDIS-09-10-0639.Google Scholar
  7. Collins, N. C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J. L., Hückelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S. C., & Schulze-Lefert, P. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425, 973–977.  https://doi.org/10.1038/nature02076.Google Scholar
  8. Czembor, H. J., Domeradzka, O., Czembor, J. H., & Mankowski, D. R. (2014). Virulence structure of the powdery mildew (Blumeria graminis) population occurring on Triticale (x Triticosecale) in Poland. Journal of Phytopathology, 162, 499–512.  https://doi.org/10.1111/jph.12225.Google Scholar
  9. Dreiseitl, A. (2003). Adaptation of Blumeria graminis f. sp. hordei to barley resistance genes in the Czech Republic in 1971-2000. Plant Soil and Environment, 49, 241–248.Google Scholar
  10. Dreiseitl, A. (2011a). Differences in powdery mildew epidemics in spring and winter barley based on 30-year variety trials. Annals of Applied Biology, 159, 49–57.  https://doi.org/10.1111/j.1744-7348.2011.00474.x.Google Scholar
  11. Dreiseitl, A. (2011b). Resistance of ‘Roxana’ to powdery mildew and its presence in some European spring barley cultivars. Plant Breeding, 130, 419–422.  https://doi.org/10.1111/j.1439-0523.2010.01786.x.Google Scholar
  12. Dreiseitl, A. (2011c). Resistance of ‘Laverda’ to powdery mildew and its presence in some winter barley cultivars. Cereal Research Communications, 39, 569–576.  https://doi.org/10.1556/CRC.2011.002.Google Scholar
  13. Dreiseitl, A. (2011d). Presence of the newly designated powdery mildew resistance Landi in some winter barley cultivars. Czech Journal of Genetics and Plant Breeding, 47, 64–68.Google Scholar
  14. Dreiseitl, A. (2014a). The Hordeum vulgare subsp. spontaneum - Blumeria graminis f. sp. hordei pathosystem: Its position in resistance research and breeding applications. European Journal of Plant Pathology. Special Issue “Wild Plant Pathosystems”, 138, 561–568.  https://doi.org/10.1007/s10658-013-0266-8.Google Scholar
  15. Dreiseitl, A. (2014b). Pathogenic divergence of central European and Australian populations of Blumeria graminis f. sp. hordei. Annals of Applied Biology, 165, 364–372.  https://doi.org/10.1111/aab.12141.Google Scholar
  16. Dreiseitl, A. (2015a). Rare virulences of barley powdery mildew found in aerial populations in the Czech Republic from 2009 to 2014. Czech Journal of Genetics and Plant Breeding, 51, 1–8.  https://doi.org/10.17221/254/2014-CJGPB.Google Scholar
  17. Dreiseitl, A. (2015b). Changes in virulence frequencies and higher fitness of simple pathotypes in the Czech population of Blumeria graminis f. sp. hordei. Plant Protection Science, 51, 67–73.  https://doi.org/10.17221/96/2014-PPS.Google Scholar
  18. Dreiseitl, A. (2016). Emerging Blumeria graminis f. sp. hordei pathotypes reveal ‘Psaknon’ resistance in European barley varieties. The Journal of Agricultural Science, 154, 1082–1089.  https://doi.org/10.1017/S0021859615001069.Google Scholar
  19. Dreiseitl, A. (2017a). High diversity of powdery mildew resistance in the ICARDA wild barley collection. Crop & Pasture Science, 68, 134–139.  https://doi.org/10.1071/CP16221.Google Scholar
  20. Dreiseitl, A. (2017b). Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Frontiers of Plant Science, 8(202).  https://doi.org/10.3389/fpls.2017.00202.
  21. Dreiseitl, A. (2017c). Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breeding, 136, 351–356.  https://doi.org/10.1111/pbr.12471.Google Scholar
  22. Dreiseitl, A. (2018). Resistance of barley variety ʻVeneziaʼ and its reflection in Blumeria graminis f. sp. hordei population. Euphytica, 214, Article Number UNSP 40,  https://doi.org/10.1007/s10681-018-2123-5.
  23. Dreiseitl, A., & Kosman, E. (2013). Virulence phenotypes of Blumeria graminis f. sp. hordei in South Africa. European Journal of Plant Pathology, 136, 113–121.  https://doi.org/10.1007/s10658-012-0143-x.Google Scholar
  24. Dreiseitl, A., & Platz, G. (2012). Powdery mildew resistance genes in barley varieties grown in Australia. Crop & Pasture Science, 63, 997–1006.  https://doi.org/10.1071/CP12065.Google Scholar
  25. Dreiseitl, A., Fowler, R. A., & Platz, G. J. (2013). Pathogenicity of Blumeria graminis f. sp. hordei in Australia in 2010 and 2011. Australasian Plant Pathology, 42, 713–721.  https://doi.org/10.1007/s13313-013-0227-x.Google Scholar
  26. El-Shamy, M. M., Emara, H. M., & Mohamad, M. E. (2016). Virulence analysis of wheat powdery mildew (Blumeria graminis f. sp. tritici) and effective genes in Middle Delta, Egypt. Plant Disease, 100, 1927–1930.  https://doi.org/10.1094/PDIS-01-16-0130-RE.Google Scholar
  27. Gilmour, J. (1973). Octal notation for designating physiologic races of plant pathogens. Nature, 242, 620.Google Scholar
  28. Goyeau, H., & Lannou, C. (2011). Specific resistance to leaf rust expressed at the seedling stage in cultivars grown in France from 1983 to 2007. Euphytica, 178, 45–62.  https://doi.org/10.1007/s10681-010-0261-5.Google Scholar
  29. Goyeau, H., Park, R., Schaeffer, B., & Lannou, C. (2006). Distribution of pathotypes with regard to host cultivars in French wheat leaf rust populations. Phytopathology, 96, 264–273.  https://doi.org/10.1094/PHYTO-96-0264.Google Scholar
  30. Herrmann, A., Löwer, C. F., & Schachtel, G. A. (1999). A new tool for entry and analysis of virulence data for plant pathogens. Plant Pathology, 48, 154–158.Google Scholar
  31. Honecker, L. (1931). Beiträge zum Mehltauproblem bei der Gerste mit besonderer Berücksichtigung der züchterischen Seite (contributions to the mildew problem in barley with special reference to the selective aspect). Pflanzenbau, Pflanzenschitiz und Pflanzenzücht, 8, 78–84, 89–106.Google Scholar
  32. Hovmøller, M. S., Caffier, V., Jalli, M., Anderson, O., Besenhofer, G., Czembor, J. H., Dreiseitl, A., Felsenstein, F., Fleck, A., Heinrics, F., Jonsson, R., Limpert, E., Mercer, P., Plesnik, S., Rashal, I., Skinnes, H., Slater, S., & Vronska, O. (2000). The European barley powdery mildew virulence survey and disease nursery 1993–1999. Agronomie, 20, 729–743.Google Scholar
  33. Jensen, H. R., Dreiseitl, A., Sadiki, M., & Schoen, D. J. (2013). High diversity, low spatial structure and rapid pathotype evolution in Moroccan populations of Blumeria graminis f. sp. hordei. European Journal of Plant Pathology, 136, 323–336.  https://doi.org/10.1007/s10658-013-0166-y.Google Scholar
  34. Jørgensen, J. H. (1994). Genetics of powdery mildew resistance in barley. Critical Reviews in Plant Sciences, 13, 97–119.Google Scholar
  35. Klocke, B., Flath, K., & Miedaner, T. (2013). Virulence phenotypes in powdery mildew (Blumeria graminis) populations and resistance genes in triticale (x Triticosecale). European Journal of Plant Pathology, 137, 463–476.  https://doi.org/10.1007/s10658-013-0257-9.Google Scholar
  36. Kolmer, J. A. (2003). Postulation of leaf rust resistance genes in selected soft red winter wheats. Crop Science, 43, 1266–1274.Google Scholar
  37. Kolmer, J. A., Long, D. L., & Hughes, M. E. (2011). Physiologic specialization of Puccinia triticina on wheat in the United States in 2009. Plant Disease, 95, 935–940.  https://doi.org/10.1094/PDIS-11-10-0786.Google Scholar
  38. Kølster, P., Munk, L., Stølen, O., & Løhde, J. (1986). Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Science, 26, 903–907.Google Scholar
  39. Komínková, E., Dreiseitl, A., Malečková, E., Doležel, J., & Valárik, M. (2016). Genetic diversity of Blumeria graminis f. sp. hordei in Central Europe and its comparison with Australian population. PLoS One, 11, e0167099.  https://doi.org/10.1371/journal.pone.0167099.Google Scholar
  40. Limpert, E. (1987). Frequencies of virulence and fungicide resistance in the European barley mildew population in 1985. Journal of Phytopathology, 119, 298–311.  https://doi.org/10.1111/j.1439-0434.1987.tb04401.x.Google Scholar
  41. Limpert, E., & Müller, K. (1994). Designation of pathotypes of plant pathogens. Journal of Phytopathology, 140, 346–358.  https://doi.org/10.1111/j.1439-0434.1994.tb00617.x.Google Scholar
  42. Lof, M. E., de Vallavieille-Pope, C., & van der Werf, W. (2017). Achieving durable resistance against plant diseases: Scenario analyses with a national-scale spatially explicit model for a wind-dispersed plant pathogen. Phytopathology, 107, 580–589.  https://doi.org/10.1094/PHYTO-05-16-0207-R.Google Scholar
  43. Lu, X., Kracher, B., Saur, I. M. L., Bauer, S., Ellwood, S. R., Wise, R., Yaeno, T., Maekawa, T., & Schulze-Lefert, P. (2016). Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proceedings of the National Academy of the United States of America, 113, E6486–E6495.  https://doi.org/10.1073/pnas.1612947113.Google Scholar
  44. Martínez, F., Sillero, J. C. & & Rubiales, D. (2005). Pathogenic specialization of Puccinia triticina in Andalusia from 1998 to 2000. Journal of Phatopathology, 153, 344–349,  https://doi.org/10.1111/j.1439-0434.2005.00983.x.
  45. McDonald, B. (2010). How can we achieve durable disease resistance in agricultural ecosystems? New Phytologist, 185, 3–5.Google Scholar
  46. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.  https://doi.org/10.1146/annurev.phyto.40.120501.101443.Google Scholar
  47. Menardo, F., Wicker, T., & Keller, B. (2017). Reconstructing the evolutionary history of powdery mildew lineages (Blumeria graminis) at different evolutionary time scales with NGS data. Genome Biology and Evolution, 9, 446–456.  https://doi.org/10.1093/gbe/evx008.Google Scholar
  48. Miedaner, T., Klocke, B., Flath, K., Geiger, H. H., & Weber, W. E. (2012). Diversity, spatial variation, and temporal dynamics of virulences in the German leaf rust (Puccinia recondita f. sp. secalis) population in winter rye. European Journal of Plant Pathology, 132, 23–35.  https://doi.org/10.1007/s10658-011-9845-8.Google Scholar
  49. Miedaner, T., Schmitt, A. K., Klocke, B., Schmiedchen, B., Wilde, P., Spieß, H., Szabo, L., Koch, S., & Flath, K. (2016). Analyzing genetic diversity for virulence and resistance phenotypes in populations of stem rust (Puccinia graminis f. sp. secalis) and winter rye (Secale cereale). Phytopathology, 106, 1335–1343.  https://doi.org/10.1094/PHYTO-10-15-0252-R.Google Scholar
  50. Murray, G. M., & Brennan, J. P. (2010). Estimating disease losses to the Australian barley industry. Australasian Plant Pathology, 39, 85–96.  https://doi.org/10.1071/AP09064.Google Scholar
  51. Niks, R. E., Xiaoquan, Q., & Marcel, T. C. (2015). Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms. Annual Review of Phytopathology, 53, 445–470.  https://doi.org/10.1146/annurev-phyto-080617-115928.Google Scholar
  52. Okoň, S. M., & Ociepa, T. (2017). Virulence structure of the Blumeria graminis DC. f. sp. avenae populations occurring in Poland across 2010-2013. European Journal of Plant Pathology, 149, 711–718.  https://doi.org/10.1007/s10658-017-1220-y.Google Scholar
  53. Panstruga, R., & Spanu, P. D. (2014). Powdery mildew genomes reloaded. New Phytologist, 202, 13–14.  https://doi.org/10.1111/nph.12635.Google Scholar
  54. Parks, R., Carbone, I., Murphy, J. P., Marshall, D., & Cowger, C. (2008). Virulence structure of the eastern U.S. wheat powdery mildew population. Plant Disease, 92, 1074–1082.  https://doi.org/10.1094/PDIS-92-7-1074.Google Scholar
  55. Schwarzbach, E. (1979). A high throughput jet trap for collecting mildew spores on living leaves. Phytopathologishe Zeitschrift, 94, 165–171.Google Scholar
  56. Schweizer, P., & Stein, N. (2011). Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Molecular Plant-Microbe Interactions, 24, 1492–1501.  https://doi.org/10.1094/MPMI-05-11-0107.Google Scholar
  57. Silvar, C., Kopahnke, D., Flath, K., Serfling, A., Perovic, D., Casas, A. M., Igartua, E., & Ordon, F. (2013). Resistance to powdery mildew in one Spanish barley landrace hardly resembles other previously identified wild barley resistances. European Journal of Plant Pathology, 136, 459–468.  https://doi.org/10.1007/s10658-013-0178-7.Google Scholar
  58. Torp, J. H., Jensen, P., & Jørgensen, J. H. (1978). Powdery mildew resistance genes in 106 northwest European spring barley varieties (pp. 75–102). In Royal Veterinary and Agricultural University, Yearbook 1978. Copenhagen.Google Scholar
  59. Walters, D. R., Avrova, A., Bingham, I. J., Burnett, F. J., Fountaine, J., Havis, N. D., Hoad, S. P., Hughes, G., Looseley, M., Oxley, S. J. P., Renwick, A., Topp, C. F. E., & Newton, A. C. (2012). Control of foliar diseases in barley: Towards an integrated approach. European Journal of Plant Pathology, 133, 33–73.  https://doi.org/10.1007/s10658-012-9948-x.Google Scholar
  60. Wan, A. M., & Chen, X. M. (2012). Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Disease, 96, 67–74.  https://doi.org/10.1094/PDIS-02-11-0119.Google Scholar
  61. Wolfe, M. S. (2000). Crop strength through diversity. Nature, 406, 681–682.  https://doi.org/10.1038/35021152.Google Scholar
  62. Wolfe, M. S., Brändle, U., Koller, B., Limpert, E., McDermott, J. M., Müller, K., & Schaffner, D. (1992). Barley mildew in Europe: Population biology and host resistance. Euphytica, 63, 125–139.  https://doi.org/10.1007/BF00023918.Google Scholar
  63. Zhang, J., Wellings, C. R., McIntosh, R. A., & Park, R. F. (2010). Seedling resistances to rust diseases in international triticale germplasm. Crop &Pasture Science, 61, 1036–1048.  https://doi.org/10.1071/CP10252.Google Scholar
  64. Zhu, J. H., Wang, J. M., Jia, Q. J., Yang, J. M., Zhou, Y. J., Lin, F., Hua, W., & Shang, Y. (2010). Pathotypes and genetic diversity of Blumeria graminis f. sp. hordei in the winter barley regions in China. Agricultural Sciences in China, 9, 1787–1798.  https://doi.org/10.1016/S1671-2927(09)60277-7.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Agrotest Fyto Ltd.KroměřížCzech Republic

Personalised recommendations