Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 3, pp 787–800 | Cite as

Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits

  • Anjney SharmaEmail author
  • Prem Lal KashyapEmail author
  • Alok Kumar Srivastava
  • Y. K. Bansal
  • Rajeev Kaushik
Article

Abstract

The present study describes the identification and polyphasic characterization of salt tolerant bacilli displaying plant growth promoting and broad spectrum antifungal activities. A total of 110 strains were isolated, out of which nine were selected on the basis of halotolerance, in vitro plant growth promoting attributes and antagonism against multiple phytopathogens. Preliminary identification of strains was done on the basis of phylogenetic analysis and comparison of 16S RNA sequences with type strains. The test strains were identified as Bacillus pumilus, B. subtilis, B. licheniformis, B. safensis and B. cereus. These strains possess ability to tolerate high salt (8–10% NaCl), form endospore, showed broad spectrum antifungal activity and therefore might cope with adverse environments. Scanning electron microscopy of promising test strains (CG18 and CM25) and pathogen interaction indicated destruction of fungal mycelia by halotolerant antagonists due to cytoplasmic extrusion. Moreover, PCR amplification of bacillomycin (bmyB), chitinase (ChiA), and β-glucanase genes and production of hydrolytic enzymes suggested that test strains could have a role to manage plant pathogens under saline conditions. Finally, the selected strains exhibited some plant growth promotion traits. Overall, this study demonstrated that the evaluated strains could be useful in developing microbial products to enhance tolerance to biotic and abiotic stresses and boost plant growth.

Keywords

Antagonism Bacillus Chickpea Plant growth promotion Salinity 

Notes

Acknowledgements

The authors thanks to Director, ICAR-NBAIM, Maunath Bhanjan (U.P.) for providing necessary support for conducting the research work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research does not involve human participants and/or animals.

Supplementary material

10658_2018_1592_MOESM1_ESM.docx (41 kb)
ESM 1 (DOCX 41 kb)

References

  1. Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University - Science, 26, 1–20.CrossRefGoogle Scholar
  2. Albarracín Orio, A. G., Brücher, E., & Ducasse, D. A. (2016). A strain of Bacillus subtilis subsp. subtilis shows a specific antagonistic activity against the soil-borne pathogen of onion Setophoma terrestris. European Journal of Plant Pathology, 144, 217–223.CrossRefGoogle Scholar
  3. Ali, S., Hameed, S., Imran, A., Iqbal, M., & Lazarovits, G. (2014). Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities. Microbial Cell Factories, 13, 1–15.CrossRefGoogle Scholar
  4. Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57, 535–538.PubMedPubMedCentralGoogle Scholar
  5. Cappuccino, J., & Sherman, N. (1992). Microbiology: A laboratory manual (Vol. 125, p. 179). New York: Benjamin/Cummings Pub. Co.Google Scholar
  6. Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Frontiers in Microbiology, 6, 780.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dey, R., Pal, K., Bhatt, D., & Chauhan, S. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159, 371–394.CrossRefPubMedGoogle Scholar
  8. Diomandé, S. E., Nguyen-The, C., Guinebretière, M.-H., Broussolle, V., & Brillard, J. (2015). Role of fatty acids in Bacillus environmental adaptation. Frontiers in Microbiology, 6, 813.PubMedPubMedCentralGoogle Scholar
  9. Esitken, A., Yildiz, H. E., Ercisli, S., Donmez, M. F., Turan, M., & Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae, 124, 62–66.CrossRefGoogle Scholar
  10. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  11. Flowers, T. J., Gaur, P. M., Gowda, C. L., Krishnamurthy, L., Samineni, S., Siddiqu, e. K. H., Turner, N. C., Vadez, V., Varshney, R. K., & Colmer, T. D. (2010). Salt sensitivity in chickpea. Plant, Cell & Environment, 33, 490–509.CrossRefGoogle Scholar
  12. Gajbhiye, A., Rai, A. R., Meshram, S. U., & Dongre, A. (2010). Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum. World Journal of Microbiology and Biotechnology, 26, 1187–1194.CrossRefPubMedGoogle Scholar
  13. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39.CrossRefPubMedGoogle Scholar
  14. Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 1–18, Article ID 701596.  https://doi.org/10.1155/2014/701596.CrossRefGoogle Scholar
  15. Hugenholtz, P., Goebel, B. M., & Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180, 4765–4774.PubMedPubMedCentralGoogle Scholar
  16. Jasrotia, P., Kashyap, P. L., Bhardwaj, A. K., Kumar, S., & Singh, G. P. (2018). Scope and applications of nanotechnology for wheat production: a review of recent advances. Wheat and Barley Research, 10(1), 1–14.  https://doi.org/10.25174/2249-4065/2018/76672.CrossRefGoogle Scholar
  17. Joshi, R., & Gardener, B. M. (2006). Identification of genes associated with pathogen inhibition in different strains B. subtilis. Phytopathology, 96, 145–154.CrossRefGoogle Scholar
  18. Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In H. N. Munro (Ed.), Mammalian protein metabolism (pp. 21–132). New York: Academic Press.CrossRefGoogle Scholar
  19. Kanekar, P. P., Nilegaonkar, S. S., Sarnaik, S. S., & Kelkar, A. S. (2002). Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresource Technology, 85, 87–93.CrossRefPubMedGoogle Scholar
  20. Kashyap, P. L., Rai, P., Srivastava, A. K., & Kumar, S. (2017). Trichoderma for climate resilient agriculture. World Journal of Microbiology and Biotechnology, 33, 155.  https://doi.org/10.1007/s11274-017-2319-1.CrossRefPubMedGoogle Scholar
  21. Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Science, 61, 217–227.CrossRefGoogle Scholar
  22. Kaur, P., Kaur, J., Kaur, S., Singh, S., & Singh, I. (2014). Salinity induced physiological and biochemical changes in chickpea (Cicer arietinum L.) genotypes. Journal of Applied and Natural Science, 6, 578–588.CrossRefGoogle Scholar
  23. Kiely, P., Haynes, J., Higgins, C., Franks, A., et al. (2006). Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microbial Ecology, 51, 257–266.CrossRefPubMedGoogle Scholar
  24. Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, 885–886.CrossRefGoogle Scholar
  25. Li, D., Nie, F., Wei, L., Wei, B., & Chen, Z. (2007). Screening of high-yielding biocontrol bacterium Bs-916 mutant by ion implantation. Applied Microbiology and Biotechnology, 75, 1401–1408.CrossRefPubMedGoogle Scholar
  26. Lorck, H. (1948). Production of hydrocyanic acid by bacteria. Physiologia Plantarum, 1, 142–146.CrossRefGoogle Scholar
  27. Maxton, A., Singh, P., & Masih, S. A. (2017). ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. Journal of Plant Nutrition.  https://doi.org/10.1080/01904167.2017.1392574.
  28. Mehta, S., & Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43, 51–56.CrossRefPubMedGoogle Scholar
  29. Mora, I., Cabrefiga, J., & Montesinos, E. (2015). Cyclic Lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against Phytopathogenic Bacteria. PLoS One, 10, e0127738.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Natarajan, A., Kumar, K., Madhuri, K., & Usharani, K. G. (2016). Isolation and characterization of salt tolerant plant growth promoting rhizobacteria from plants grown in tsunami affected regions of Andaman and Nicobar islands. Geomicrobiology Journal, 33, 942–947.  https://doi.org/10.1080/01490451.2015.1128994.CrossRefGoogle Scholar
  31. Nene, Y., Reddy, M., Haware, M., Ghanekar, A., Amin, K., Pande, S., Sharma, M. (2012). Field diagnosis of chickpea diseases and their control. Information Bulletin No. 28 (revised) International Crops Research Institute for the Semi-Arid Tropics.Google Scholar
  32. Pande, S., Rao, J. N., & Sharma, M. (2007). Establishment of the chickpea wilt pathogen Fusarium oxysporum f. sp. ciceris in the soil through seed transmission. Plant Pathology Journal, 23, 3–6.CrossRefGoogle Scholar
  33. Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118, 10–15.CrossRefPubMedGoogle Scholar
  34. Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology, 17, 362–370.Google Scholar
  35. Rai, P., Sharma, A., Saxena, P., Soni, A., et al. (2015). Comparison of molecular and phenetic typing methods to assess diversity of selected members of the genus Bacillus. Microbiology, 84, 236–246.CrossRefGoogle Scholar
  36. Ramaiah, N., Hill, R. T., Chun, J., Ravel, J., et al. (2000). Use of a chiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay. FEMS Microbiology Ecology, 34, 63–71.PubMedGoogle Scholar
  37. Renwick, A., Campbell, R., & Coe, S. (1991). Assesment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathology, 40, 524–532.CrossRefGoogle Scholar
  38. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.Google Scholar
  39. Schwyn, B., & Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56.CrossRefPubMedGoogle Scholar
  40. Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology and Biotechnological Equipment, 31, 446–459.  https://doi.org/10.1080/13102818.2017.1286950.CrossRefGoogle Scholar
  41. Shakeel, M., Rais, A., Hassan, M. N., & Hafeez, F. Y. (2015). Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Frontiers in Microbiology, 6, 1286.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sharan, A., Darmwal, N. S., & Gaur, R. (2008). Xanthomonas campestris, a novel stress tolerant, phosphate-solubilizing bacterial strain from saline–alkali soils. World Journal of Microbiology and Biotechnology, 24, 753–759.CrossRefGoogle Scholar
  43. Sharma, A., Singh, P., Kumar, S., Kashyap, P. L., Srivastava, A. K., Chakdar, H., Singh, R. N., Kaushik, R., Saxena, A. K., & Sharma, A. K. (2015). Deciphering diversity of salt-tolerant bacilli from saline soils of eastern indo-gangetic plains of India. Geomicrobiology, 32, 170–180.CrossRefGoogle Scholar
  44. Shrestha, B. K., Karki, H. S., Groth, D. E., Jungkhun, N., & Ham, J. H. (2016). Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS One, 11(1), e0146764.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22, 123–131.CrossRefPubMedGoogle Scholar
  46. Siddikee, M. A., Chauhan, P. S., Anandham, R., Han, G. H., & Sa, T. (2010). Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. Journal of Microbiology and Biotechnology, 20(11), 1577–1584.CrossRefPubMedGoogle Scholar
  47. Siddiqui, S., Siddiqui, Z. A., & Ahmad, I. (2005). Evaluation of fluorescent Pseudomonads and Bacillus isolates for the biocontrol of a wilt disease complex of pigeonpea. World Journal of Microbiology and Biotechnology, 21, 729–732.CrossRefGoogle Scholar
  48. Singh, R. K., Kumar, D. P., Singh, P., Solanki, M. K., Srivastava, S., Kashyap, P. L., Kumar, S., Srivastava, A. K., Singhal, P. K., & Arora, D. K. (2014). Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regulation, 73, 91–101.CrossRefGoogle Scholar
  49. Smibert, R., & Krieg, N. (1994). Phenotypic characterization. Methods for general and molecular bacteriology. In Methods for general and molecular microbiology (pp. 607–654). Washington, DC: ASM Press.Google Scholar
  50. Solanki, M. K., Robert, A. S., Singh, R. K., Kumar, S., Pandey, A. K., Srivastava, A. K., & Arora, D. K. (2012a). Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Current Microbiology, 65, 330–336.CrossRefPubMedGoogle Scholar
  51. Solanki, M. K., Kumar, S., Pandey, A. K., Srivastava, S., Singh, R. K., Kashyap, P. L., Srivastava, A. K., & Arora, D. K. (2012b). Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Science and Technology, 22, 203–217.CrossRefGoogle Scholar
  52. Solanki, M. K., Singh, R. K., Srivastava, S., Kumar, S., Kashyap, P. L., & Srivastava, A. K. (2015). Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. Journal of Basic Microbiology, 55, 82–90.CrossRefPubMedGoogle Scholar
  53. Srivastava, R., Tripathi, B. M., Singh, R. K., Srivastva, P., Kumari, P., et al. (2013). Profiling of plant growth promoting bacteria associated with Jaunpuri giant raddish rhizosphere. International Journal of Agriculture, Environment & Biotechnology, 6(2), 187–196.Google Scholar
  54. Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857.CrossRefPubMedGoogle Scholar
  55. Turner, N. C., Colmer, T. D., Quealy, J., Pushpavalli, R., Krishnamurthy, L., Kaur, J., Singh, G., Siddique, K. H. M., & Vadez, V. (2013). Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant and Soil, 365, 347–361.CrossRefGoogle Scholar
  56. Vejan, P., Abdullah, R., Khadiran, T., & Ismail, S. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules, 21, 573.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Versalovic, J., Schneider, M., de Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 5, 25–40.Google Scholar
  58. Yadav, S., Kaushik, R., Saxena, A. K., & Arora, D. K. (2011). Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. Journal of Basic Microbiology, 51, 98–106.CrossRefPubMedGoogle Scholar
  59. Yuan, W. M., & Crawford, D. L. (1995). Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology, 61, 3119–3128.PubMedPubMedCentralGoogle Scholar
  60. Zahid, M., Abbasi, M. K., Hameed, S., & Rahim, N. (2015). Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology, 6, 207.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhao, Y., Selvaraj, J. N., Xing, F., Zhou, L., Wang, Y., Song, H., Tan, X., Sun, L., Sangare, L., Folly, Y. M. E., & Liu, Y. (2014). Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One, 9(3), e92486.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.ICAR-National Bureau of Agriculturally Important MicroorganismsMauIndia
  2. 2.ICAR-Indian Institute of Wheat and Barley Research (IIWBR)KarnalIndia
  3. 3.Department of Post Graduate Studies and Research in Biological ScienceJabalpurIndia
  4. 4.Division of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations