European Journal of Plant Pathology

, Volume 153, Issue 3, pp 657–669 | Cite as

Apple blotch disease (Marssonina coronaria (Ellis & Davis) Davis) – review and research prospects

  • Thomas WöhnerEmail author
  • Ofere Francis Emeriewen


Apple blotch, caused by Marssonina coronaria, is a serious and widely distributed fungal disease that causes huge losses to apple production especially in South and East Asia. The pathogen causes black spots on apple fruits, leaves and premature defoliation, resulting in weakened physiological balance of the host, reduced tree vigor and decreased yield. It is not clear when the pathogen first occurred in Europe but the disease has become increasingly important in Europe due to its unexpected occurrences in European organic orchards in the last decade. Hence, information on the pathogen host range and geographical distribution, symptoms, biology and disease cycle, as well as epidemiology is vital in developing control strategies. Only the asexual stage of the pathogen has been observed in Europe to date. Therefore, mating and sexual recombination mechanism of the pathogen as well as its overall evolutionary potential is unknown. Altogether, population genetics, importance of primary inoculum, overwintering and the time point of disease outbreak are less researched issues of this pathogen. Host resistance is thought to be the most reliable means to prevent the further spread of this pathogen in organic orchards. However, knowledge about the disease and its interaction with the host is a prerequisite for breeding durable resistant apple cultivars. This review highlights the information available from previous research on M. coronaria and its occurrence on apple.


Marssonina coronaria Diplocarpon mali Apple blotch Premature leaf fall Malus 



The authors are grateful to Andreas Peil and Viola Hanke (Julius Kühn-Institut) for proofreading the manuscript. We also thank Michel Giraud (CTIFL), Jan Hinrichs-Berger (LTZ Augustenberg), Hans Scheinpflug, Beatrice Lauria-Pluschkell and Markus Linde (Leibniz Universität Hannover) for helpful discussions, suggestions and ideas.


Acervulus, subepidermal, asexual fruiting body; Anamorph, imperfect or asexual stage of a fungus; Apothecium, open cup- or saucer-shaped fruiting body of ascomycetes containing asci; Ascospore, sexually produced spore in an ascus; Ascus, sac-like cell of the ascocarp containing ascospores; Biotroph, organism that can live and multiply only on another living organism; Conidiophore, conidia producing hypha; Conidium, asexual fungus spore developed at the end of conidiophores; Hemibiotroph, organism with a parasitic and saprophytic life part; Holomorph, total of teleomorphic and anamorphic stage of a fungus; Hypha, single branch of mycelium; Necrothroph, organism that feed only on dead tissue; Mycelium, hypha shaping the entire fungus; Paraphysis, sterile hypha separating fruiting bodies inside the apothecium; Saprophyte, organism that feed on dead organic material; Spermatium, male gamete of rust fungi; Subcuticularhypha, parallel mycelia between adaxial epidermic cells and cuticle; Teleomorph, perfect or sexual stage of a fungus.

Compliance with ethical standards

Human and animal rights

The authors can assure that this article does not contain any studies with human or animal subject.

Conflict of interests

The authors declare that there are no conflicts of interests.


  1. Badiu D, Arion F, Muresan I, Lile R, Mitre V (2015) Evaluation of Economic Efficiency of Apple Orchard Investments. Sustainability 7(8), 10521–10533. Google Scholar
  2. Bensaude, M. (1926). Diseases of economic plants in the Azores. Kew Bulletin of Miscellaneous Information, 9, 381–389, 1926.Google Scholar
  3. Back, C. G., & Jung, H. Y. (2014). Biological characterization of Marssonina coronaria infecting apple trees in Korea. The Korean Journal of Mycology, 42(3), 183-190.Google Scholar
  4. Davis, J. J. (1903). Third supplementary list of parasitic fungi of Wisconsin. Transaction of the Wisconsin Academy of Science, Art and Letters, 14(1), 83–106.Google Scholar
  5. Davis, J.J. (1914). Marssonina coronariae (Ellis & Davis) Davis. Transactions of the Wisconsin Academy of Science, 17(2), 881.Google Scholar
  6. Debener, T., & Byrne, D. H. (2014). Disease resistance breeding in rose: Current status and potential of biotechnological tools. Plant Science, 228, 107–117.CrossRefPubMedGoogle Scholar
  7. Didelot, F., Caffier, V., Orain, G., Lemarquand, A., & Parisi, L. (2016). Sustainable management of scab control through the integration of apple resistant cultivars in a low-fungicide input system. Agriculture Ecosystems and Environment, 217, 41–48.CrossRefGoogle Scholar
  8. Ellis, M. A., Ferree, D. C., Funt, R. C., & Madden, L. V. (1998). Effects of apple scab-resistant cultivars on use patterns of inorganic and organic fungicides and economics of disease control. Plant Disease, 82(4), 428–433.CrossRefPubMedGoogle Scholar
  9. Engler, A. (1906). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie Band37.Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
  10. Funes, I., Aranda, X., Biel, C., Carbó, J., Camps, F., Molina, A., Herralde, F., Grau, B., & Savé, R. (2016). Future climate change impacts on apple flowering date in a Mediterranean subbasin. Agricultural Water Management, 164(1), 19–27.CrossRefGoogle Scholar
  11. Gachomo, E. W., & Kotchoni, S. O. (2007). Detailed description of developmental growth stages of Diplocarpon rosae in Rosa: a core building block for efficient disease management. Annals of Applied Biology, 151, 233–243.CrossRefGoogle Scholar
  12. Gao, Y., Li, B., Dong, X., Wang, C., Li, G., & Li, B. (2011). Effects of temperature and moisture on sporulation of Diplocarpon mali on overwintered apple leaves. Scientia Agricultura Sinica, 44(7), 1367–1374.Google Scholar
  13. Harada, Y., Sawamura, K., & Konno, K. (1974). Diplocarpon mali sp. Nov., the perfect stage of apple blotch fungus Marssonina coronaria. Annals of the Phytopathological Society of Japan, 40, 412–418.CrossRefGoogle Scholar
  14. Hinrichs-Berger, J., & Müller, G. (2013). Zum Auftreten von Marssonina coronaria an Apfel in Baden-Württemberg. Journal für Kulturpflanzen, 65, 347–350.Google Scholar
  15. Holb, I. J. (2006). Effect of six sanitation treatments on leaf litter density, ascospore production of Venturia inaequalis and scab incidence in integrated and organic apple orchards. European Journal of Plant Pathology, 115, 293–307.CrossRefGoogle Scholar
  16. Holb, I. J. (2007). Classification of apple cultivar reactions to scab in integrated and organic production systems. Canadian Journal of Plant Pathology, 29, 251–260.CrossRefGoogle Scholar
  17. Holb, I. J., De Jong, P. F., & Heijne, B. (2003). Efficacy and phytotoxicity of lime Sulphur in organic apple production. The Annals of Applied Biology, 142, 225–233.CrossRefGoogle Scholar
  18. Horbach, R., Navarro-Quesada, A. R., Knogge, W., & Deising, H. B. (2011). When and how to kill a plant cell: infection strategies of plant pathogenic fungi. Journal of plant physiology, 168(1), 51-62.Google Scholar
  19. Huang, Y. (1986). Overwintering characteristics of Marssonina coronaria (Ellis & Davis) Davis. Journal Southwest Forestry College, 1, 60–65.Google Scholar
  20. Ivić, D., Sever, Z., & Tomić, Ž. (2017). Marssonina leaf blotch (Diplocarpon mali), a new disease of apple in Croatia. Glasilo biljne zaštite, 17(3), 323–328.Google Scholar
  21. Kwon, D., Kim, S., Kim, Y., Son, M., Kim, K., An, D., & Kim, B. H. (2015). An Empirical Assessment of the Economic Damage Caused by Apple Marssonina Blotch and Pear Scab Outbreaks in Korea. Sustainability, 7(12), 16588–16598.Google Scholar
  22. Le Corre, M. (2015). Attenion chute de feuilles! Reussier Fruit & Legumes, 348, 48.Google Scholar
  23. Lee, H., & Shin, H. (2000). Taxonomic studies on the genus Marssonina coronaria in Korea. Mycobiology, 281, 39–46.CrossRefGoogle Scholar
  24. Lee, Y. H., Cho, W. D., Kim, W. K., Lee, E. J., Han, S. J., & Chung, H. S. (1993). Detailed survey of apple and pear diseases in major fruit producing areas of Korea (88-92). Korean Journal of Plant Pathology, 9, 47–51.Google Scholar
  25. Lee, D. H., Back, C., Win, N. K. K., Choi, K., Kim, K., Kang, I., Choi, C., Yoon, T., Uhm, J. Y., & Jung, H. (2011). Biological characterization of Marssonina coronaria associated with apple blotch disease. Mycobiology, 39(3), 200–205.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Leite, R. P., Tsuneta, M., & Kishino, A. Y. (1986). Apple leaf spot caused by Marssoninacoronaria. Fitopathologia Brasileira, 3, 725–759.Google Scholar
  27. Li, Y., Hirst, P. M., Wan, Y., & Liu, Y. (2012). Resistance to Marssonina coronaria and Alternaria alternata apple pathotype in the major apple cultivars and rootstocks used in China. Horticultural Science, 47(9), 1241–1244.Google Scholar
  28. Magnus, P. W. (1906). Notwendige Umänderung des Namens der Pilzgattung Marssonia Fisch. Druck von C. Heinrich.Google Scholar
  29. Mc Kinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.Google Scholar
  30. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.CrossRefPubMedGoogle Scholar
  31. Miyake, I. (1907). Über einige Pilz-Krankheiten unserer Nutzpflanzen. Botanisches Magazin Tokyo, 21, 49–53.Google Scholar
  32. Naef, A., Häseli, A., Schärer, H.J. (2013). Marssonina Blattfall, eine neue Apfelkrankheit. Schweizer Zeitschrift für Obst- und Weinbau, 16, 8–11.Google Scholar
  33. Nakata, K., & Takimoto, K. (1928). List of diseases of cultivated plants in Korea. Bulletin Experiment Station Korea, 15, 1–146.Google Scholar
  34. O’Rourke, D., Janick, J., & Sansavini, S. (2003). World apple cultivar dynamics. Chronica Horticulturae, 43, 10–13.Google Scholar
  35. Park, J.S. (1958). Fungous diseases of plants in Korea (1). College Agriculture Chungnam National University Bulletin, 1, 106.Google Scholar
  36. Parmelee, J. A. (1971). Marssonina leaf spot of apple. Canadian Plant Disease Survey, 51(2), 91–92.Google Scholar
  37. Peck, G. M., Preston, K. A., Reganold, J. P., & Fellman, J. K. (2006). Apple orchard productivity and fruit quality under organic, conventional, and integrated management. HortScience, 41(1), 99–107.CrossRefGoogle Scholar
  38. Peil, A., Kellerhals, M., Höfer, M., & Flachowsky, H. (2011). Apple breeding- from origin to genetic engineering. Fruit Vegetables and Cereal Science and Biotechnology, 5(Special Issue 1), 118–138.Google Scholar
  39. Persen, U., Steffek, R., Freiding, C., & Bedlan, G. (2012). Erstnachweis von Diplocarpon mali an Malusdomestica in Österreich. Journal für Kulturpflanzen, 64(5), 168–170.Google Scholar
  40. Piepenbring, M., Camarena, J., Cruz, D., Gomez, A.K. (2011). New records of pathogenic fungi on cultivated plants in Panama. Accessed 28 May 2014.
  41. Saccardo, P.A. (1912). Annales Mycologici Editi in Notitiam Scientiae Mycologicae Universalis. 10,313.Google Scholar
  42. Sharma, J. N. (2000). Marssonina blotch – A new disease of apple and its control. Indian Journal of Plant Protection, 28, 100–101.Google Scholar
  43. Sharma, J. N., Sharma, A., & Sharma, P. (2004). Outbreak of Marssonina blotch in warmer climates causing premature leaf fall problem of apple and its management. Acta Horticulturae, (662), 405–409.Google Scholar
  44. Sharma, N., Thakur, V. S., Mohan, J., Khurana, S. M., & Sharma, S. (2011). Epidemiology of Marssonina blotch (Marssonina coronaria) of apple in India. Indian Phytopathology, 62(3), 348–359.Google Scholar
  45. Sharma, N., Thakur, V. S., Sharma, S., Mohan, J., & Khurana, S. M. (2012). Development of Marssonina blotch (Marssonia coronaria) in different genotypes of apple. Indian Phytopatholoy, 64(4), 358–362.Google Scholar
  46. Sutton, T.B., Aldwinckle, H.S., Agnello, A.M., Walgenbach, J.F. (2014). Compendium of apple and pear diseases and pests, Second Edition. APS Press, 1, 48–49.Google Scholar
  47. Tamietti, G., & Matta, A. (2003). First report of leaf blotch caused by Marssonina coronaria on apple in Italy. Plant Disease, 87(8), 1005.CrossRefPubMedGoogle Scholar
  48. Terefe-Ayana, D., Aneela, Y., Loan, T., Kaufmann, H., Biber, A., Kühr, A., Linde, M., & Debener, T. (2011). Mining disease-resistance genes in roses: functional and molecular characterization of the Rdr1 locus. Frontiers in Plant Science, 2, 1–11.CrossRefGoogle Scholar
  49. Terefe-Ayana, D., Kaufmann, H., Linde, M., & Debener, T. (2012). Evolution of the Rdr1 TNL-cluster in roses and other Rosaceae. BMC Genomics, 13, 409.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Trapman, M. (2013). Erste Erfahrungen mit einer neuen aggressiven Blattfallkrankheit an Apfel. European Fruit Magazine, 6, 16–17.Google Scholar
  51. Van Bruggen, A. H. C., Gamliel, A., & Finckh, M. R. (2015). Plant disease management in organic farming systems. Pest Management Science, 72, 30–44.CrossRefPubMedGoogle Scholar
  52. van Bueren, E. L., Backes, G., De Vriend, H., & Østergård, H. (2010). The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica, 175(1), 51-64.Google Scholar
  53. Van Treuren, R., Kemp, H., Ernsting, G., Jongejans, B., Houtman, H., & Visser, L. (2010). Microsatellite genotyping of apple (Malus× domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genetic Resources and Crop Evolution, 57(6), 853-865.Google Scholar
  54. Wang, M., Zhou, H., Guo, Y., Wan, Y., Zhao, Z., & Guo, Y. (2013). Comparisons of induced pathogenesis-related proteins in resistant and susceptible apple cultivars in response to inoculation of the pathogen Marssonina coronaria. Journal of American Pomological Society, 67(3), 137–146.Google Scholar
  55. Weibel, F. P., Daniel, C., Tamm, L., Willer, H., & Schwartau, H. (2012). Development of organic fruit in Europe. Acta Horticulturae, 1001, 19–34.Google Scholar
  56. Whitaker, V. M., Debener, T., Robert, A. V., & Hokanson, S. C. (2010). A standard set of differentials and unified nomenclature for an international collection of Diplocarpon rosae races. Plant Pathology, 59, 745–752.CrossRefGoogle Scholar
  57. Xu, J., Li, M., Jiao, P., Tao, H., Wie, N., Ma, F., & Zhang, J. (2015). Dynamic transcription profiles of 'Qinguan' apple (Malus ×domestica) leaves in response to Marssonina coronaria inoculation. Frontiers in Plant Science, 6(842), 1–11.Google Scholar
  58. Xue, A. G., Sutton, J. C., Dale, A., & Sullivan, A. (1996). Differences in virulence of Diplocarpon earlianum isolates on selected strawberry cultivars. Phytoprotection, 77, 113–118.CrossRefGoogle Scholar
  59. Yin, L., Li, M., Ke, X., Li, C., Zou, Y., Liang, D., & Ma, F. (2013a). Evaluation of Malus germplasm resistance to Marssonina apple blotch. European Journal of Plant Pathology, 136, 597–602.CrossRefGoogle Scholar
  60. Yin, L., Zou, Y., Li, M., Ke, X., Li, C., Liang, D., & Ma, F. (2013b). Resistance of Malus plants to Diplocarpon mali infection is associated with the antioxidant system and defense signaling pathway. Physiological and Molecular Plant Pathology, 84, 146–152.CrossRefGoogle Scholar
  61. Zhao, H., Huang, L., Xiao, C. J., Liu, J., Wei, J., & Gao, X. (2010). Influence of culture media and environmental factors on mycelial growth and conidial production of Diplocarpon mali. Letters in Applied Microbiology, 50, 639–644.CrossRefPubMedGoogle Scholar
  62. Zhao, H., Han, Q., Wang, J., Gao, X., Xiao, C., Liu, J., & Huang, L. (2013). Cytology of infection of apple leaves by Diplocarpon mali. European Journal of Plant Pathology, 136, 41–49.CrossRefGoogle Scholar
  63. Zheng, J., & Sutton, J. C. (2009). Inoculum concentration, leaf age, wetness duration, and temperature in relation to infection of strawberry leaves by Diplocarpon earlianum. Canadian Journal of Plant Pathology, 16(3), 177–186.CrossRefGoogle Scholar
  64. Zhou, Q., Gao, H., Wang, M., Xu, Y., Guo, Y. Z., Wan, Y. Z., & Zhao, Z. Y. (2012). Characterization of defence related genes in the 'Qinguan' apple in response to Marssonina coronaria. South African Journal of Botany, 80, 36–43.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Julius Kühn-Institut, Federal Research Centre for Cultivated PlantsInstitute for Breeding Research on Fruit CropsDresdenGermany

Personalised recommendations