European Journal of Plant Pathology

, Volume 153, Issue 3, pp 759–770 | Cite as

Characterization and management of watermelon bud necrosis virus infecting watermelon in India

  • R. Priyanka
  • K. NagendranEmail author
  • R. Aravintharaj
  • C. G. Balaji
  • S. Mohankumar
  • P. Renukadevi
  • G. Karthikeyan


Bud necrosis disease is an emerging threat for watermelon cultivation in India. It is characterized by necrotic spots and patches on leaves, bud and fruits with characteristic chlorotic ring spots as documented in Coimbatore and Villupuram districts of Tamil Nadu, India. The causative agent of this disease was identified as watermelon bud necrosis virus (WBNV) by reverse-transcription polymerase chain reaction (RT-PCR) followed by sequence analysis of amplified fragment using Orthotospovirus universal degenerate primer pair. Upon mechanical inoculation, the virus produced circular chlorotic local lesions on leaves of cowpea and Chenopodium amaranticolor, necrotic local lesions on Trianthema portulacastrum and bottle gourd, systemic vein clearing on Luffa aegyptiaca, whereas both local and systemic symptoms were observed on Nicotiana tabacum and watermelon. The complete nucleotide sequences of the coat protein (NP), movement protein (MP), replicase (RdRp) and NSs protein genes from WBNV genome of Coimbatore isolate (TN KTP WM1) had a maximum identity of 97% with the genome of the WBNV-JT strain from Southern India. WBNV infection causes significant reduction in nutritional parameters such as carbohydrate, protein, crude fibre, calorific value, total sugar, reducing sugar and vitamin A in infected fruits when compared to the healthy ones. For the management of WBNV in watermelon, an Integrated Pest Management (IPM) module has been devised which reduced the thrips population and WBNV incidence to a great extent besides increasing the fruit yield.


Tospovirus Virus management Thrips Cucurbits Bud necrosis Watermelon virus 



We are grateful to Dr. R.A. Naidu (WSU, USA) for his valuable guidance and suggestions in conducting this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Current research does not involved human participants or animals.

Supplementary material

10658_2018_1589_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 30 kb)
10658_2018_1589_MOESM2_ESM.pptx (208 kb)
ESM 2 (PPTX 207 kb)


  1. Adkins, S., Choi, T. J., Israel, B. A., Bandla, M. D., Richmond, K. E., Schultz, K. T., Sherwood, J. L., & German, T. L. (1996). Bacuhovirus expression and processing of Tomato spotted wilt tospovirus glycoproteins. Phytopathology, 56, 849–855.CrossRefGoogle Scholar
  2. Akram, M., & Naimuddin, A. (2012). Biological characterization and variability of the nucleocapsid protein gene of Groundnut bud necrosis virus isolates infecting pea from India. Phytopathologia Mediterranea, 51(2), 266–275.Google Scholar
  3. Anjaneya Reddy, B., Krishnareddy, M., Jalali, S., Patil, M. S., & Usha Rani, T. R. (2008). Detection of a tospovirus-infecting tomato (Solanum lycopersicon L.). Indian. Journal of Virology, 19, 1–5.Google Scholar
  4. Bayfield, R. F., & Cole, E. R. (1980). Colorimetric estimation of vitamin a with trichloroacetic acid. Methods in Enzymology, 67, 180–195.CrossRefGoogle Scholar
  5. Bhanupriya, M. (2006). Biological and molecular characterization of Indian tospovirus isolates from economically important crops and development of transgenic tomato with nucleocapsid gene, Ph.D thesis. Sri Venkateswara University, Tirupati, India p75.Google Scholar
  6. Bhat, A. I., Jain, R. K., Varma, A., Chandra, N., & Lal, S. K. (2001). Tospovirus(es) infecting grain legumes in Delhi – Their identification by serology and nucleic acid hybridization. Indian Phytopathology, 54, 112–116.Google Scholar
  7. Bhunchote, A., Chiemsombat, P., Seepiban, C., Wongyam, S., Hongprayoon, R., & Gajanandana, O. (2005). Molecular characterization of Melon yellow spot virus infecting cucurbits in Thailand. In: Proceedings on the National Conference organized by National Center for Genetic Engineering and Biotechnology, Bangkok, Thailand pp43.Google Scholar
  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefPubMedGoogle Scholar
  9. Chiemsombat, P., Gajanandana, O., Warin, N., Hongprayoon, R., Bhunchoth, A., & Pongsapich, P. (2008). Biological and molecular characterization of tospoviruses in Thailand. Archives of Virology, 153, 571–577.CrossRefPubMedGoogle Scholar
  10. Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162(1), 156–159.CrossRefPubMedGoogle Scholar
  11. Chu, F. H., Chao, C. H., Chung, M. H., Chen, C. C., & Yeh, S. D. (2001). Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology, 91, 361–368.CrossRefPubMedGoogle Scholar
  12. Clark, M. F., & Adams, A. N. (1977). Characteristics of the microplate method of enzyme linked immuno-sorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475–483.CrossRefPubMedGoogle Scholar
  13. DACFW. (2015). Department of agriculture, cooperation & farmers welfare. In Horticultural statistics at a glance 2015 (p. 18). New Delhi: Oxford University Press. Accessed 22 July 2017.
  14. Delmiglio, C., & Pearson, M. N. (2006). Effects and incidence of Cucumber mosaic virus, Watermelon mosaic virus and Zucchini yellow mosaic virus in New Zealand’s only native cucurbit, Sicyos australis. Australasian Plant Pathology, 35(1), 29–35.CrossRefGoogle Scholar
  15. Dijkstra, J., & de Jager, C. P. (1998). Practical plant virology protocols and exercises (pp. 359–362). Berlin: Spinger-virlag.CrossRefGoogle Scholar
  16. Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA segment of Tomato spotted wilt virus has an ambisense character. Journal of General Virology, 71, 1001–1007.CrossRefPubMedGoogle Scholar
  17. Hedge, J.E., & Hofreiter, B.T. (1962). Determination of reducing sugars and carbohydrates: anthrone colorimetric method. In R. L. Whistler, & Be Miller, (Eds.), Carbohydrate chemistry (pp. 380–394). New York: Academic Press.Google Scholar
  18. Hochmuth, G.J., Hochmuth, R.C., & Olson, S.M. (2008). Polyethylene mulching for early vegetable production in North Florida. University of Florida IFAS Extension. No. 805. Accessed 20 June 2017.
  19. ICTV. (2017). International committee on Taxonomy of Viruses (ICTV). Resource document. Accessed 22 Aug 2017.
  20. Jain, R. K., Pappu, H. R., Pappu, S. S., Krishnareddy, M., & Vani, A. (1998). Watermelon bud necrosis tospovirus is a distinct virus species belonging to sub-group IV. Archives of Virology, 143(8), 1637–1644.CrossRefPubMedGoogle Scholar
  21. Jain, R. K., Bag, S., Umamaheswaran, K., & Mandal, B. (2007). Natural infection by Tospovirus of cucurbitaceous and fabaceous vegetable crops. Journal of Phytopathology, 155, 22–25.CrossRefGoogle Scholar
  22. Jones, D. R. (2005). Plant viruses transmitted by thrips. European Journal of Plant Pathology, 113, 119–157.CrossRefGoogle Scholar
  23. Kalogirou, M. (2012). Antiviral and quality effects of chemical elicitors and Cucumber mosaic virus (CMV) infection on tomato plants and fruits, Ph.D. thesis, Cranfield University pp183–195.Google Scholar
  24. Kandan, A., Radjacommare, R., Nandakumar, R., Raguchander, T., Ramiah, M., & Samiyappan, R. (2002). Induction of phenylpropanoid metabolism by Pseudomonas fluorescens against Tomato spotted wilt virus in tomato. Folia Microbiologica, 47(2), 121–129.CrossRefPubMedGoogle Scholar
  25. Kormelink, R., Kitajima, E. W., de Haan, P., Zuidema, D., Peters, D., & Goldbach, R. (1991). The nonstructural protein (NSs) encoded by the ambisense S RNA segment of Tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology, 181, 459–468.CrossRefPubMedGoogle Scholar
  26. Krishnareddy, M., & Singh, S.J. (1993). Immunology and molecular based diagnosis of tospovirus infecting watermelon, in: Golden Jubilee symposium on horticultural research: Changing scenario. Bangalore, India. pp247–248.Google Scholar
  27. Kumar, R., Mandal, B., Geetanjali, A. S., Jain, R. K., & Jaiwal, P. K. (2010). Genome organization and sequence comparison suggest intraspecies incongruence in M RNA of watermelon bud necrosis virus. Archives of Virology, 155, 1361–1365.CrossRefPubMedGoogle Scholar
  28. Kunkalikar, S. R., Poojari, S., Arun, B. M., Rajagopalan, P. A., Chen, T. C., Yeh, S. D., Naidu, R. A., Zehr, U. B., & Ravi, K. S. (2011). Importance and genetic diversity of vegetable-infecting tospoviruses in India. Phytopathology, 101(3), 367–376.CrossRefPubMedGoogle Scholar
  29. Lane, J. H., & Eynon, L. (1923). Determination of reducing sugars by means of Fehling solution with methylene blue as an indicator. Journal of the Society of Chemical Industry, 42, 32–37.CrossRefGoogle Scholar
  30. Li, J. T., Yeh, Y. C., Yeh, S. D., Raja, J. A. J., Rajagopalan, P. A., Liu, L. Y., & Chen, T. C. (2011). Complete genomic sequence of Watermelon bud necrosis virus. Archives of Virology, 156, 359–362.CrossRefPubMedGoogle Scholar
  31. Makkouk, K. M., & Kumari, S. G. (2009). Epidemiology and integrated management of persistently transmitted aphids borne viruses of legume and cereal crops in West Asia and North Africa. Virus Research, 141(2), 209–218.CrossRefPubMedGoogle Scholar
  32. Mandal, B., Jain, R. K., Krishnareddy, M., Krishna Kumar, N. K., Ravi, K. S., & Pappu, H. R. (2012). Emerging problems of Tospoviruses (Bunyaviridae) and their management in the Indian subcontinent. Plant Disease, 96(4), 468–479.CrossRefPubMedGoogle Scholar
  33. Mansoor, S., Khan, S. H., Hussain, M., Mushtaq, N., Zafar, Y., & Malik, K. A. (2000). Evidence that watermelon leaf curl disease in Pakistan is associated with tomato leaf curl virus-India, a bipartite begomovirus. Plant Disease, 84(1), 102.CrossRefPubMedGoogle Scholar
  34. Maynard, A. J. (1970). Methods in Food Analysis (p. 176). New York: Academic Press.Google Scholar
  35. Miller, G. L. (1972). Use of DNS reagent for the determination of glucose. Analytical Biochemistry, 31, 426–428.Google Scholar
  36. Nagendran, K., Mohankumar, S., Aravintharaj, R., Balaji, C. G., Manoranjitham, S. K., Singh, A. K., Rai, A. B., Singh, B., & Karthikeyan, G. (2017). The occurrence and distribution of major viruses infecting cucurbits in Tamil Nadu state, India. Crop Protection, 99, 10–16.CrossRefGoogle Scholar
  37. Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of Tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Reseaarch, 141, 219–236.CrossRefGoogle Scholar
  38. Phillips, K. M., & Tarragó-Trani, M. T. (1997). Simplified gravimetric determination of Total fat in food composites after chloroform-methanol extraction. JAOCS, 74(2), 137–142.CrossRefGoogle Scholar
  39. Polston, J. E., McGovern, R. J., & Brown, L. G. (1999). Introduction of tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Disease, 83, 984–988.CrossRefPubMedGoogle Scholar
  40. Provvidenti, R. (1991). Inheritance of resistance to the Florida strain of Zucchini yellow mosaic virus in watermelon. Horticultural Science, 26, 407–408.Google Scholar
  41. Rajasekaram, T. (2010). Biological and molecular characterization and management of watermelon bud necrosis virus. Ph.D., thesis, University of Agricultural Sciences, Dharward, Karnataka, India pp12–27.Google Scholar
  42. Rebijith, K. B., Asokan, R., Krishna, V., Ranjitha, H. H., Kumar, N. K., & Ramamurthy, V. V. (2014). DNA barcoding and elucidation of cryptic diversity in thrips (Thysanoptera). Florida Entomologist, 97(4), 1328–1347.CrossRefGoogle Scholar
  43. Ruck, J.A. (1963). Chemical methods for analysis of fruit and vegetable products. Canada: Canada Department of Agriculture.Google Scholar
  44. Sadasivam, S., & Balasubramanian, T. (1987). Practical manual in biochemistry. Coimbatore: Tamil Nadu Agricultural University.Google Scholar
  45. Shirshikar, S. P. (2008). Integrated management of sunflower necrosis disease. Helia, 31, 27–34.CrossRefGoogle Scholar
  46. Singh, S. J., & Krishnareddy, M. (1996). Watermelon bud necrosis: A new Tospovirus disease. Acta Horticulturae, (431), 68–77.Google Scholar
  47. Stavisky, J., Funderburk, J. E., Brodbeck, B. V., Olson, S. M., & Andersen, P. C. (2002). Population dynamics of Frankliniella spp. and tomato spotted wilt incidence as influenced by cultural management tactics in tomato. Journal of Economic Entomology, 95, 1216–1221.CrossRefPubMedGoogle Scholar
  48. Suresh, L. M., Malathi, V. G., & Shivanna, M. B. (2013). Serological diagnosis and host range studies of important viral diseases of a few cucurbitaceous crops in Maharashtra, India. Archives of Phytopathology and Plant Protection, 46, 233.CrossRefGoogle Scholar
  49. Thiribhuvanamala, G., Murugan, M., Jayalakshmi, V., Manoranjitham, S. K., Renuka Devi, P., & Rabindran, R. (2013). Strategic approaches for the management of peanut bud necrosis virus disease of tomato. Pest Management in Horticultural Ecosystems, 19(1), 67–72.Google Scholar
  50. Ullman, D. E., Sherwood, J. L., & German, T. L. (1997). Thrips as vectors of plant pathogens. In T. Lewis (Ed.), Thrips as crop pests (pp. 539–565). New York: CAB International.Google Scholar
  51. Varma, A. (2007). Emergence and reemergence of plant viruses in India: impact and management options. In P. Lava Kumar, R. A. C. Jones, & F. Waliyar, (Eds.), Abstracts of 10 th international plant virus epidemiology symposium: controlling epidemics of emerging and established plant virus diseases–the way forward (p. 46). Hyderabad: ICRISAT.Google Scholar
  52. Wehner, T. C., Shetty, N. V., & Elmstrom, G. W. (2001). Breeding and seed production. In D. N. Maynard (Ed.), Watermelons: Characteristics, production, and marketing (pp. 27–73). Alexandria: ASHS Press.Google Scholar
  53. Whitfield, A. E., Ullman, D. E., & German, T. L. (2005). Tospovirus-thrips interactions. Annual Review of Phytopathology, 43, 459–489.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • R. Priyanka
    • 1
  • K. Nagendran
    • 1
    • 2
    Email author
  • R. Aravintharaj
    • 1
    • 3
  • C. G. Balaji
    • 1
  • S. Mohankumar
    • 4
  • P. Renukadevi
    • 1
  • G. Karthikeyan
    • 1
  1. 1.Department of Plant PathologyTamil Nadu Agricultural UniversityCoimbatoreIndia
  2. 2.Division of Crop ProtectionICAR – Indian Institute of Vegetable ResearchVaranasiIndia
  3. 3.Division of BiotechnologyICAR-Indian Institute of Horticultural ResearchBengaluruIndia
  4. 4.Department of Plant Molecular Biology and BiotechnologyTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations