Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 3, pp 731–742 | Cite as

Genetic diversity and pathogenicity dynamics of Magnaporthe oryzae in the Wuling Mountain area of China

  • Xin Xu
  • Wu Yang
  • Ke Tian
  • Jie Zheng
  • Xinqiong Liu
  • Kai Li
  • Wei Lu
  • Yanping Tan
  • Yonghua Qin
  • Chuntai WangEmail author
Article
  • 85 Downloads

Abstract

Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most destructive diseases in cultivated rice. The Wuling Mountain Area is marked as the key area for the national prevention and control of rice blast disease in China and is the ideal area for M. oryzae research according to its unique natural condition. In this study, a simple, low-cost and effective marker system including RAPD, REMAP, rep-PCR and Avr genes was developed for genetic diversity analysis of 108 M. oryzae isolates collected from the Wuling Mountain Area during 2012–2014. The results showed significant changes in the genetic structures of M. oryzae populations over the 3 years. However, there was no remarkably simple relationship between the genetic lineages and pathotypes (physiological races) of M. oryzae. The main mechanisms of M. oryzae to overcome host genes in the natural conditions of the Wuling Mountain Area might be point mutations or small deletions of gene sequences.

Keywords

Genetic diversity Pathogenicity dynamics Magnaporthe oryzae 

Notes

Acknowledgements

We gratefully acknowledge Dr. Xiaoyuan Zhu (the Plant Protection Research Institute of the Guangdong Academy of Agricultural Sciences, China) for the help of disease evaluation.

Funding

We are grateful for grants from the Science Funds for the Creative Research Groups of Hubei Province, China (No. 2015CFA015) and the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities, China (No. CZP17029 & CZP17089).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2018_1587_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)
10658_2018_1587_MOESM3_ESM.jpg (120 kb)
Figure S1A Amplification frequencies of Avr genes in 108 M. oryzae isolates collected in Wuling Mountain Area from 2012 to 2014. Frequency of the number of Avr genes carried (JPG 119 kb)
10658_2018_1587_MOESM2_ESM.jpg (52 kb)
Figure S1A Amplification frequencies of Avr genes in 108 M. oryzae isolates collected in Wuling Mountain Area from 2012 to 2014. Frequency of a single Avr gene (JPG 52.1 kb)

References

  1. Abed-Ashtiani, F., Kadir, J., Nasehi, A., Hashemian-Rahaghi, S. R., Vadamalai, G., & Rambe, S. K. (2016). Characterisation of Magnaporthe oryzae isolates from rice in peninsular Malaysia. Czech Journal of Genetics and Plant Breeding, 52, 145–156.CrossRefGoogle Scholar
  2. Brandfass, C., & Karlovsky, P. (2008). Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error. International Journal of Molecular Sciences, 9, 2306–2301.CrossRefGoogle Scholar
  3. Chen, Q. H., Wang, Y. C., & Zheng, X. B. (2006). Genetic diversity of Magnaporthe grisea in China as revealed by DNA fingerprint haplotypes and pathotypes. Journal of Phytopathology, 154, 361–369.CrossRefGoogle Scholar
  4. Chen, H. L., Chen, B. T., Zhang, D. P., Xie, Y. F., & Zhang, Q. (2007). Pathotypes of Pyricularia grisea in rice fields of central and southern China. Plant Disease, 85, 843–850.CrossRefGoogle Scholar
  5. Choi, J., Kim, H., & Lee, Y. H. (2013). Comparative analysis of the Korean population of Magnaporthe oryzae by multilocus microsatellite typing. Plant Pathology Journal, 29, 435–439.CrossRefGoogle Scholar
  6. Chuma, I. (2013). Studies on mechanisms of adaptation of the blast fungus to rice resistance genes. Journal of General Plant Pathology, 79, 453–454.CrossRefGoogle Scholar
  7. Chuma, I., Isobe, C., Hotta, Y., Ibaragi, K., Futamata, N., Kusaba, M., & Tosa, Y. (2011). Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathogens, 7, e1002147.CrossRefGoogle Scholar
  8. Costanzo, S., & Jia, Y. L. (2009). Alternatively spliced transcripts of Pi-ta blast resistance gene in Oryza sativa. Plant Science, 177, 468–478.CrossRefGoogle Scholar
  9. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., & Birren, B. W. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434, 980–986.CrossRefGoogle Scholar
  10. Dioh, W., Tharreau, D., Notteghem, J. L., Orbach, M., & Lebrun, M. H. (2000). Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Molecular Plant-Microbe Interactions, 13, 217–227.CrossRefGoogle Scholar
  11. Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9, 275–296.CrossRefGoogle Scholar
  12. Hammer, Ø., Harper, D. A.T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.Google Scholar
  13. Hu, K. M., Qiu, D. Y., Shen, X. L., Li, X. H., & Wang, S. P. (2008). Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Molecular Plant, 1, 786–793.CrossRefGoogle Scholar
  14. Huang, J., Si, W. N., Deng, Q. M., Li, P., & Yang, S. H. (2014). Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genetics, 15, 45.CrossRefGoogle Scholar
  15. Imam, J., Alam, S., Mandal, N. P., Shukla, P., Sharma, T. R., & Variar, M. (2015). Molecular identification and virulence analysis of AVR genes in rice blast pathogen, Magnaporthe oryzae from eastern India. Euphytica, 206, 21–31.CrossRefGoogle Scholar
  16. Javan-nikkhah, M., McDonald, B., Banke, S., & Hedjaroude, G. A. (2004). Genetic structure of Iranian Pyricularia grisea populations based on rep-PCR fingerprinting. European Journal of Plant Pathology, 110, 909–919.CrossRefGoogle Scholar
  17. Jeon, J., Park, S. Y., Chi, M. H., Choi, J., Park, J., Rho, H. S., & Lee, Y. H. (2007). Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nature Genetics, 39, 561–565.CrossRefGoogle Scholar
  18. Jia, Y. L., McAdams, S. A., Bryan, G. T., Hershey, H. P., & Valent, B. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 19, 4004–4014.CrossRefGoogle Scholar
  19. Khush, G. S., & Jena, K. K. (2009). Current status and future prospects for research on blast resistance in rice (Oryza sativa L.). In G.-L. Wang & B. Valent (Eds.), Advances in genetics, genomics and control of Rice blast disease (pp. 1–10). Dordrecht: Springer Netherlands.Google Scholar
  20. Kiyosawa, S. (1982). Genetics and epidemiological modeling of breakdown of plant disease resistance. Annual Review of Phytopathology, 20, 93–117.CrossRefGoogle Scholar
  21. Kiyosawa, S. (1984). Establishment of differential varieties for pathogenicity test of rice blast fungus. Rice Genetics Newsletter, 1, 95–97.Google Scholar
  22. Kumar, J., Nelson, R. J., & Zeigler, R. S. (1999). Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Genetics, 152, 971–984.Google Scholar
  23. Li, P., Bai, B., Zhang, H. Y., Zhou, H., & Zhou, B. (2012). Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae. Journal of Zhejiang University Science B, 13, 452–464.CrossRefGoogle Scholar
  24. Li, M., Wang, C. T., Zhou, J., & Xu, X. (2014). Genetic diversity of Magnaporthe oryzae in western Hubei Province in 2011. Journal of Anhui Agricultural Sciences, 42, 4249–4251.Google Scholar
  25. Lu, M. H., Liu, W. C., Zhu, F., Zhang, Q. D., & Xia, F. (2015). Investigation of the causes and countermeasures of rice blast severe outbreak in 2014 (in Chinese). China Plant Protection, 35, 35–39.Google Scholar
  26. Marchetti, M. A., Lai, X. H., & Bollich, C. N. (1987). Inheritance of resistance to Pyricularia oryzae in rice cultivars grown in the United States. Phytopathology, 77, 721–787.CrossRefGoogle Scholar
  27. Mekwatanakarn, P., Kositratana, W., Levy, M., & Zeigler, R. S. (2000). Pathotype and avirulence gene diversity of Pyricularia grisea in Thailand as determined by rice lines near-isogenic for major resistance genes. Plant Disease, 84, 60–70.CrossRefGoogle Scholar
  28. Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G., & Valent, B. (2000). A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 12, 2019–2032.CrossRefGoogle Scholar
  29. Pagliaccia, D., Urak, R. Z., Wong, F., Douhan, L. A. I., Greer, C. A., Vidalakis, G., & Douhan, G. W. (2018). Genetic structure of the rice blast pathogen (Magnaporthe oryzae) over a decade in North Central California rice fields. Microbial Ecology, 75, 310–317Google Scholar
  30. Park, S. Y., Milgroom, M. G., Han, S. S., Kang, S., & Lee, Y. H. (2003). Diversity of pathotypes and DNA fingerprint haplotypes in populations of Magnaporthe grisea in Korea over two decades. Phytopathology, 93, 1378–1385.CrossRefGoogle Scholar
  31. Priya, V., Kandasamy, S., Sankaralingam, A., Rabindran, R., & Robin, S. (2013). Variability in Pyricularia oryzae from different rice growing regions of Tamil Nadu, India. African Journal of Microbiology Research, 7, 3379–3388.CrossRefGoogle Scholar
  32. Selisana, S. M., Yanoria, M. J., Quime, B., Chaipanya, C., Lu, G., Opulencia, R., & Zhou, B. (2017). Avirulence (AVR) gene-based diagnosis complements existing pathogen surveillance tools for effective deployment of resistance (R) genes against rice blast disease. Phytopathology, 107, 711–720.CrossRefGoogle Scholar
  33. Shang, J. J., Wang, Y., Su, L., Luo, M. S., Yan, X., Yu, C., & Zhu, Y. L. (2016). Comparative analysis of genetic structure in Magnaporthe oryzae isolates from indica and japonica hosts in China. Journal of General Plant Pathology, 82, 154–158.CrossRefGoogle Scholar
  34. Telebanco-Yanoria, M. J., Koide, Y., Fukuta, Y., Imbe, T., Kato, H., Tsunematsu, H., & Kobayashi, N. (2010). Development of near-isogenic lines of japonica-type rice variety Lijiangxintuanheigu as differentials for blast resistance. Breeding Science, 60, 629–638.CrossRefGoogle Scholar
  35. Tian, K., Yang, W., Li, M., Xu, X., Liu, X. Q., Liu, X. Q., & Wang, C. T. (2017). Pathogenicity changes of Magnaporthe oryzae in South-Western Hubei Province during 2012-2014 (in Chinese with English abstract). Journal of Huazhong Agricultural University, 36, 10–14.Google Scholar
  36. Tsunematsu, H., Yanoria, M. J. T., Ebron, L. A., Hayashi, N., Ando, I., Kato, H., & Khush, G. S. (2000). Development of monogenic lines of rice for blast resistance. Breeding Science, 50, 229–234.CrossRefGoogle Scholar
  37. Wu, J., Kou, Y. J., Bao, J. D., Li, Y., Tang, M. Z., Zhu, X. L., Ponaya, A., Xiao, G., Li, J. B., Li, C. Y., Song, M. Y., Cumagun, C. J. R., Deng, Q. Y., Lu, G. D., Jeon, J. S., Naqvi, N. I., & Zhou, B. (2015). Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist, 206, 1463–1475.CrossRefGoogle Scholar
  38. Xue, M. F., Yang, J., Li, Z. G., Hu, S. N., Yao, N., Dean, R. A., & Peng, Y. L. (2012). Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genetics, 8, e1002869.CrossRefGoogle Scholar
  39. Yadav, M. K., Aravindan, S., Ngangkham, U., Shubudhi, H. N., Bag, M. K., Adak, T., Munda, S., Samantaray, S., & Jena, M. (2017). Use of molecular markers in identification and characterization of resistance to rice blast in India. PLoS One, 12, e0176236.CrossRefGoogle Scholar
  40. Yang, X. L., Shi, S. S., Zhang, S., Liang, L. V., & Yu, D. Z. (2016). Population pathotype of Magnaporthe oryzae in rice blast epidemic areas of Hubei Province. Hubei Agricultural Sciences, 55(4169–4171), 4175.Google Scholar
  41. Zhou, E. X., Jia, Y. L., Singh, P., Correll, J. C., & Lee, F. N. (2007). Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genetics and Biology, 44, 1024–1034.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Xin Xu
    • 1
  • Wu Yang
    • 1
  • Ke Tian
    • 1
  • Jie Zheng
    • 1
  • Xinqiong Liu
    • 1
  • Kai Li
    • 1
  • Wei Lu
    • 1
  • Yanping Tan
    • 1
  • Yonghua Qin
    • 1
  • Chuntai Wang
    • 1
    Email author
  1. 1.Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life SciencesSouth-Central University for NationalitiesWuhanChina

Personalised recommendations