Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 2, pp 327–339 | Cite as

Saprotrophic survival of Magnaporthe oryzae in infested wheat residues

  • Carlos Augusto PizolottoEmail author
  • João Leodato Nunes Maciel
  • José Maurício Cunha Fernandes
  • Walter Boller
Major Reviews

Abstract

Wheat blast caused by Magnaporthe oryzae is a relatively new disease that has caused considerable losses in wheat fields of several South American countries, including Brazil. The 2016 report of wheat blast occurrence in Bangladesh raised concern in South Asia where wheat represents a significant crop. The sources of primary inoculum and survival from season to season of the fungus remain largely unknown. The effect of wheat residues on the onset of blast epidemics and the potential for survival of M. oryzae in the residues were studied under subtropical climatic conditions, in the South of Brazil. The objective of this study was to monitor the saprotrophic development of M. oryzae on wheat debris and explore the relative importance of crop residues as a source of inoculum. The wheat cultivars BRS 229 and Anahuac 75, moderately and highly susceptible to the disease, respectively, were inoculated with a spore suspension of 10−5 conidia mL−1 using an aggressive (Py 12.1.209) and a less aggressive (Py 12.1.132) isolate. At maturity, a portion of leaves, stems and spikes were detached from plants, and a group of ten lesions were randomly selected and marked on each type of plant organ. The air-dried plant organs were placed separately inside bags and exposed outside. The experiment was conducted over three different time intervals. Each 14 days, samples were taken from the field and tested for sporulation. The survival of the blast fungus decreased rapidly on the rachis when compared to stems and leaves. Sporulation of the fungus was observed on the wheat residues for up to five months. Based on the results of this study, the possibility that the causal agent of wheat blast survives under Brazilian conditions from one crop to another in wheat residues is very low. The management of crop residues is not a key point to control the development of wheat blast. A strong emphasis should be placed on the presence of other hosts.

Keywords

Wheat blast Triticum aestivum Primary inoculum Wheat straw Disease cycle 

References

  1. Bornhofen, E., Todeschini, M. H., Stoco, M. G., Madureira, A., Marchioro, V. S., et al. (2018). Wheat yield improvements in Brazil: Roles of genetics and environment. Crop Science, 57, 1–12.Google Scholar
  2. Brunetta, D., Dotto, S. R., Bassoi, M. C., & Miranda, L. C. (2006). Características e desempenho agronômico da cultivar de trigo BRS 229 no Paraná. Pesquisa Agropecuária Brasileira, 41, 889–892.CrossRefGoogle Scholar
  3. Callaway, E. (2016). Devastating wheat fungus appears in Asia for first time. Nature, 532, 421–422.CrossRefGoogle Scholar
  4. Castroagudin, V. L., Moreira, S. I., Pereira, D. A. S., Moreira, S. S., Brunner, P. C., et al. (2016). Wheat blast disease caused by Pyricularia graminis- tritici sp. nov. Persoonia, 37, 199–206.CrossRefGoogle Scholar
  5. Chávez, A., & Kohli, M. (2015). Alternative hosts of Magnaporthe grisea of wheat in Paraguay (in Spanish). Investigación Agraria, 17, 54–59.CrossRefGoogle Scholar
  6. Couch, B., & Kohn, L. (2002). A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 94, 683–693.CrossRefGoogle Scholar
  7. Cruz, C. D., & Valent, B. (2017). Wheat blast disease: danger on the move. Tropical Plant Pathology, 42, 201–222.CrossRefGoogle Scholar
  8. Cruz, C. D., Peterson, G. L., Bockus, W. W., Kankanala, P., Dubcovsky, J., et al. (2016). The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum Pathotype of Magnaporthe oryzae. American Society of Agronomy, 56, 990–1000.Google Scholar
  9. Danelli, A. L. D. (2015). Virulência, processo infeccioso e sensibilidade a fungicidas de Magnaporthe oryzae associado à cultura do trigo. Thesis (Ph.D. course in Agronomy) – Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS.Google Scholar
  10. de Asis Reges, J. T., Negrisoli, M. M., Doriga, A. F., Castroágudin, V. L., Maciel, J. L. N., et al. (2016). Pyricularia pennisetigena and P. zingibericola from invasive grasses infect signal grass, barley and wheat Pesquisa Agropecuria. Tropical, 46, 206–214.Google Scholar
  11. Dias Martins, T. (2004). Comparação entre métodos para avaliação de transmissão de Magnaporthe grisea através de sementes em triticale. Fitopatologia Brasileira, 29, 425–428.CrossRefGoogle Scholar
  12. Fernandes, J. M. F., Nicolau, M., Pavan, W. M., Amaral, C., Karrei, M., et al. (2017). A weather-based model for predicting early season inoculum build-up and spike infection by the wheat blast pathogen. Tropical Plant Pathology, 42, 230–237.CrossRefGoogle Scholar
  13. Fernandez, M. R., Fernandes, J. M., & Sutton, J. C. (1993). Effects of fallow and of summer and winter crops on survival of wheat pathogens in crop residues. Plant Disease, 77, 698–703.CrossRefGoogle Scholar
  14. Galindo, F. S., Filho, M. C. M. T., Buzetti, S., Santini, J. M. K., Alves, C. J., et al. (2017). Wheat yield in the Cerrado as affected by nitrogen fertilization and inoculation with Azospirillum brasiliense. Pesquisa Agropecuária Brasileira, 52, 794–805.CrossRefGoogle Scholar
  15. Gladieux, P., Condon, B., Ravel, S., Soanes, D., Maciel, J. L. N., et al. (2018). Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Magnaporthe oryzae. mBio, 9(1), e01219–e01217.CrossRefGoogle Scholar
  16. Goel, M. K., Khanna, P., & Kishore, J. (2010). Understanding survival analysis: Kaplan-Meier estimate. International Journal of Ayurveda Research, 1(4), 274–278.CrossRefGoogle Scholar
  17. Goulart, A. (2005). Perdas em trigo causadas pela brusone. Pages 123–130 In: Workshop de Epidemiologia de Doenças de Plantas. Viçosa, M. Quantificação de perdas no manejo de doenças de plantas: anais. Viçosa, M: Universidade Federal de Viçosa.Google Scholar
  18. Goulart, A. C. P., Sousa, P. G., & Urashima, A. S. (2007). Damages in wheat caused by infection of Pyricularia grisea. (In Portuguese.). Summa Phytopathologica, 33, 358–363.CrossRefGoogle Scholar
  19. Harmon, P. F., & Latin, R. (2005). Winter survival of the perennial ryegrass pathogen Magnaporthe oryzae in north Central Indiana. Plant Disease, 89, 412–418.CrossRefGoogle Scholar
  20. Horbach, R., Knogge, W., Quezada, A. N., & Deising, H. B. (2011). When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. Journal of Plant Physiology, 168, 51–62.CrossRefGoogle Scholar
  21. Igarashi, S., Utiamada, C. M., Igarashi, L. C., Kazuma, A. H., & Lopes, R. S. (1986). Pyricularia sp. em trigo. I. Ocorrência de Pyricularia sp. no estado do Parana. Fitopatologia Brasileira, 11, 351–352.Google Scholar
  22. Inoue, Y., Vy, T. T. P., Kentaro, Y., Hokuto, A., Mitsuoka, C., et al. (2017). Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science, 357, 80–83.CrossRefGoogle Scholar
  23. International Maize and Wheat Improvement Center. CIMMYT Report on Wheat Improvement (1977). El Batan, 1977 Mexico. 245p. https://repository.cimmyt.org/xmlui/bitstream/handle/10883/3883.
  24. Khonga, E. B., & Sutton, J. C. (1988). Inoculum production and survival of Gibberella zeae in maize and wheat residues. Plant Pathology, 10, 232–239.Google Scholar
  25. Kohli, M. M., Mehta, Y. R., Guzman, E., De Viedma, L., et al. (2011). Pyricularia blast – A threat to wheat cultivation. Czech Journal of Plant Breeding, 47, 130–134.CrossRefGoogle Scholar
  26. Li, Y., Uddin, W., & Kaminski, J. E. (2014). Effects of relative humidity on infection, colonization and conidiation of Magnaporthe orzyae on perennial ryegrass. Plant Pathology, 63, 590–597.CrossRefGoogle Scholar
  27. Maciel, J. L. N., Ceresini, P. C., Castroagudin, V. L., Zala, M., Kema, G. H. J., & McDonald, B. A. (2014). Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology, 104, 95–107.CrossRefGoogle Scholar
  28. Marangoni, M. S., Nunes, M. P., Fonseca Jr., N., & Mehta, Y. R. (2013). Pyricularia blast on white oats: A new threat to wheat cultivation. Tropical Plant Pathology, 38, 198–202.CrossRefGoogle Scholar
  29. Munaro, L., Benin, G., Marchioro, V. S., de Assis Franco, F., Silva, R. R., et al. (2014). Brazilian spring wheat homogeneous adaptation regions can be dissected in major mega-enviroments. Crop Science, 54, 1374–1383.CrossRefGoogle Scholar
  30. Ceresini, P. C., et al. (2018).Wheat blast: from its origins in South America to its emergence as a global threat. Molecular Plant Pathology.  https://doi.org/10.1111/mpp.12747.
  31. R Development Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL https://www.R-project.org/.
  32. Raveloson, H., Ramonta, I. R., Tharreau, D., & Sester, M. (2018). Infected rice residues allowing long term survival of blast pathogen serve as major source of primary inoculum in high altitude upland ecology. Plant Pathology, 67, 610–618.CrossRefGoogle Scholar
  33. Reis, E. M., Casa, R. T., Forcelini, C. A., et al. (1995). Doenças do trigo. In Kimati H et al (Eds.). Manual de Fitopatologia: Doenças de plantas cultivadas. 3. Ed., 2, (pp. 725–736). São Paulo: Ceres AgronômicaGoogle Scholar
  34. Streck, E. V., Dalmolin, R. S. D., Kämpf, N., Pinto, L. S. F. (2008). Solos do Rio Grande do Sul. 2nd ed. Porto Alegre, EMATER/RS-ASCAR.Google Scholar
  35. Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: Extending the cox model. New York: Springer.CrossRefGoogle Scholar
  36. Vales, M., Anzoátegui, T., Huallpa, B., & Cazon, M. I. (2018). Review on resistance to wheat blast disease (Magnaporthe oryzae Triticum) from the breeder point-of-view: Use of the experience on resistance to rice blast disease. Euphytica, 214(1).Google Scholar
  37. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the grown stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar
  38. Zhang, C., Zong, H., Zhuge, B., Lu, X., Fang, H., Zhu, J., & Zhuge, J. (2016). Protoplast preparation and polyethylene glycol (PEG)-mediated transformation of Candida glycerinogenes. Biotechnology and Bioprocess Engineering, 21, 95–102.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Carlos Augusto Pizolotto
    • 1
    Email author
  • João Leodato Nunes Maciel
    • 2
  • José Maurício Cunha Fernandes
    • 2
  • Walter Boller
    • 3
  1. 1.CAPES/Embrapa Scholarship in the Programa de Pós-Graduação em Agronomia da Universidade de Passo Fundo (PPGAgro/UPF)Passo FundoBrazil
  2. 2.Centro Nacional de Pesquisa de Trigo (Embrapa Trigo)Passo FundoBrazil
  3. 3.Programa de Pós-Graduação em Agronomia da Universidade de Passo Fundo (PPGAgro/UPF)Passo FundoBrazil

Personalised recommendations