European Journal of Plant Pathology

, Volume 153, Issue 1, pp 239–250 | Cite as

Nematicidal effect against Bursaphelenchus xylophilus of harmine quaternary ammonium derivatives, inhibitory activity and molecular docking studies on acetylcholinesterase

  • Yan Xia
  • Ya-meng Qi
  • Xi-hui Yu
  • Bin-feng Wang
  • Ri-hui CaoEmail author
  • Ding-xin JiangEmail author


In the present study, we have investigated nematicidal effects against Bursaphelenchus xylophilus and inhibition potential, molecular docking of 43 harmine derivatives on acetylcholinesterase in vitro and in vivo. Among them, harmine quaternary ammonium derivatives 10, 11, 12 and 13 displayed promising nematicidal effects with 48 h LC50 values of 1.63, 1.63, 1.75 and 1.44 μg/mL, respectively and remarkable inhibition effects on acetylcholinesterase (IC50 values are 0.92, 0.90, 0.82, 0.07 μg/mL in vitro and 17.16, 14.56, 13.63, 3.06 μg/mL in vivo, respectively). The structure–activity analysis indicated that the presence of the methyl group in 1–position, the electron–donating substituents in 2–and 9–positions, bromine in 6–position, and the electron–withdrawing substituents in 7–position of carboline ring, could enhance the nematicidal effect and inhibition of acetylcholinesterase. Moreover, a molecular model was provided for the binding between compound 13 and the active site of acetylcholinesterase based on the computational docking results and helps us to optimize these new leading compounds.


Harmine derivatives Natural product – Based nematicide Acetylcholinesterase Structure – Activity relationships Molecular docking 



The work was supported by the Science and Technology Planning Project of Guangdong Province, China [grant numbers 2016A020210082]; the Science and Technology Program of Guangzhou, China [grant numbers 201607010181]; the Science and Technology Program of Zhongshan, China [grant numbers 2016F2FC0016]; the National Natural Science Foundation of China [grant numbers 31171871]. We are grateful to Xu Zenglin (College of Food Science, South China Agricultural University) for expert assistance in molecule docking study.

Compliance with ethical standards

Conflict of interest

All authors certify that 1) they do not have any actual or potential conflict of interest, 2) the study described is original and has not been published previously, and is not under consideration for publication elsewhere, 3) all prevailing local, national and international regulations and conventions, and normal scientific ethical practices, have been respected. We also certify that all authors have reviewed the manuscript and approved the final version of manuscript before submission.

Human and animal subjects

This article does not contain any studies with human or animal subjects.

Informed consent

All the authors certify that the work carried out in this research followed the principles of ethical and professional conduct have been followed. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


  1. Behidj-Benyounes, N., Dahmene, T., Allouche, N., & Laddad, A. (2014). Phytochemical, antibacterial and antifungal activities of alkaloids extracted from Peganum harmala (Linn.) seeds of south of Algeria. Asian Journal of Chemistry, 26(10B), 2960–2964.Google Scholar
  2. Benzekri, R., Bouslama, L., Papetti, A., Snoussi, M., Benslimene, I., Hamami, M., & Limam, F. (2016). Isolation and identification of an antibacterial compound from Diplotaxis harra (Forssk.) Boiss. Industrial Crops and Products, 80, 228–234.Google Scholar
  3. Bloomquist, J. R., Ferguson, H. J., Cox, E. D., Reddy, M. S., & Cook, J. M. (1997). Mode of action of beta-carboline convulsants on the insect nervous system and their potential as insecticides. Pesticide Science, 51(1), 1–6.Google Scholar
  4. Bourne, Y., Grassi, J., Bougis, P. E., & Marchot, P. (1999). Conformational flexibility of the acetylcholinesterase tetramer suggested by X-ray crystallography. Journal of Biological Chemistry, 274(43), 30370–30376.Google Scholar
  5. Cao, R., Peng, W., Wang, Z., & Xu, A. (2007). Beta-Carboline alkaloids: Biochemical and pharmacological functions. Current Medicinal Chemistry, 14(4), 479–500.Google Scholar
  6. Cao, R., Fan, W., Guo, L., Ma, Q., Zhang, G., Li, J., Chen, X., Ren, Z., & Qiu, L. (2013). Synthesis and structure-activity relationships of harmine derivatives as potential antitumor agents. European Journal of Medicinal Chemistry, 60, 135–143.Google Scholar
  7. Chen, Q., Chao, R. H., Chen, H. S., Hou, X. R., Yan, H. F., Zhou, S. F., Peng, W. L., & Xu, A. L. (2005). Antitumor and neurotoxic effects of novel harmine derivatives and structure-activity relationship analysis. International Journal of Cancer, 114(5), 675–682.Google Scholar
  8. Chen, X., Wehle, S., Kuzmanovic, N., Merget, B., Holzgrabe, U., Koenig, B., Sotriffer, C. A., & Decker, M. (2014). Acetylcholinesterase inhibitors with Photoswitchable inhibition of beta-amyloid aggregation. ACS Chemical Neuroscience, 5(5), 377–389.Google Scholar
  9. Chermenskaya, T. D., Stepanycheva, E. A., Shchenikova, A. V., & Chakaeva, A. S. (2010). Insectoacaricidal and deterrent activities of extracts of Kyrgyzstan plants against three agricultural pests. Industrial Crops and Products, 32(2), 157–163.Google Scholar
  10. Chitwood, D. J. (2002). Phytochemical based strategies for nematode control. Annual Review of Phytopathology, 40(1), 221–249.Google Scholar
  11. Choi, J. S., Haulader, S., Karki, S., Jung, H. J., Kim, H. R., & Jung, H. A. (2015). Acetyl- and butyryl-cholinesterase inhibitory activities of the edible brown alga Eisenia bicyclis. Archives of Pharmacal Research, 38(8), 1477–1487.Google Scholar
  12. El Hassan, M., Zahra, F., & Mina, I. H. L. (2013). Anti-nematode effect assessment of Peganum harmala based-products against Meloidogyne javanica on melon. Journal of Biology, Agriculture and Healthcare, 3, 5–10.Google Scholar
  13. Ellman, G. L., Courtney, K. D., Andres, V. J., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.Google Scholar
  14. Glennon, R. A., Dukat, M., Grella, B., Hong, S., Costantino, L., Teitler, M., Smith, C., Egan, C., Davis, K., & Mattson, M. V. (2000). Binding of beta-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug and Alcohol Dependence, 60(2), 121–132.Google Scholar
  15. Guo, L., Cao, R., Fan, W., & Ma, Q. (2014). Synthesis and biological evaluation of 1,2,7,9-Tetrasubstituted Harmine derivatives as potential antitumor agents. Chemical Journal of Chinese Universities-Chinese, 35(3), 518–523.Google Scholar
  16. Hamsa, T. P., & Kuttan, G. (2010). Harmine inhibits tumour specific neo-vessel formation by regulating VEGF, MMP, TIMP and pro-inflammatory mediators both in vivo and in vitro. European Journal of Pharmacology, 649(1–3), 64–73.Google Scholar
  17. He, D., Wu, H., Wei, Y., Liu, W., Huang, F., Shi, H., Zhang, B., Wu, X., & Wang, C. (2015). Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice. European Journal of Pharmacology, 768, 96–107.Google Scholar
  18. Herraiz, T., Gonzalez, D., Ancin-Azpilicueta, C., Aran, V. J., & Guillen, H. (2010). Beta-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food and Chemical Toxicology, 48(3), 839–845.Google Scholar
  19. Jakobsen, H., Bojer, M. S., Marinus, M. G., Xu, T., Struve, C., Krogfelt, K. A., & Lobner-Olesen, A. (2013). The alkaloid compound Harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the Nematode's innate immune response. PLoS One, 8(e605193), e60519.Google Scholar
  20. Kang, J. S., Lee, D. W., Choi, J. Y., Je, Y. H., Koh, Y. H., & Lee, S. H. (2011). Three acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus: Insights into distinct physiological functions. Molecular and Biochemical Parasitology, 175(2), 154–161.Google Scholar
  21. Kang, J. S., Moon, Y. S. & Lee, S. H. (2012). Inhibition properties of three acetylcholinesterases of the pinewood nematode Bursaphelenchus xylophilus by organophosphates and carbamates. Pesticide Biochemistry and Physiology, 104(2SI), 157-162.Google Scholar
  22. Kang, J. S., Kim, E., Lee, S. H., & Park, I. (2013). Inhibition of acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus, by phytochemicals from plant essential oils. Pesticide Biochemistry and Physiology, 105(1), 50–56.Google Scholar
  23. Khorana, N., Smith, C., Herrick-Davis, K., Purohit, A., Teitler, M., Grella, B., Dukat, M., & Glennon, R. A. (2003). Binding of tetrahydrocarboline derivatives at human 5-HT5A receptors. Journal of Medicinal Chemistry, 46(18), 3930–3937.Google Scholar
  24. Kim, J., Seo, S., Lee, S., Shin, S., & Park, I. (2008). Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus). Journal of Agricultural and Food Chemistry, 56(16), 7316–7320.Google Scholar
  25. Kiyohara, T., & Tokushige, Y. (1971). Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. Journal of the Japanese Forestry Society, 53(7), 210–218.Google Scholar
  26. Kobayashi, F., Yamane, A., & Ikeda, T. (1984). The Japanese pine sawyer beetle as the vector of pine wilt disease. Annual Review of Entomology, 29(1), 115–135.Google Scholar
  27. Kong, J., Lee, S., Moon, Y., Lee, S., & Ahn, Y. (2006). Nematicidal activity of plant essential oils against Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). Journal of Asia-Pacific Entomology, 9(2), 173–178.Google Scholar
  28. Larson, R. A., Marley, K. A., Tuveson, R. W., & Berenbaum, M. R. (1988). Beta-carboline alkaloids: Mechanisms of phototoxicity to bacteria and insects. Photochemistry and Photobiology, 48(5), 665–674.Google Scholar
  29. Lee, S. M., Chung, Y. J., Moon, Y. S., Lee, S. G., Lee, D. W., Choo, H. Y., & Lee, C. K. (2003). Insecticidal activity and fumigation conditions of several insecticides against Japanese pine sawyer (Monochamus alternatus) larvae. Journal of Korean Forestry Society, 92(3), 191–198.Google Scholar
  30. Li, Z., Chen, S., Zhu, S., Luo, J., Zhang, Y., & Weng, Q. (2015). Synthesis and fungicidal activity of beta-Carboline alkaloids and their derivatives. Molecules, 20(8), 13941–13957.Google Scholar
  31. Lin, N., Zhao, M., Wang, C., & Peng, S. (2002). Synthesis and antithrombotic activity of carbolinecarboxyl RGD sequence. Bioorganic & Medicinal Chemistry Letters, 12(4), 585–587.Google Scholar
  32. Liu, Y., Song, H., Huang, Y., Li, J., Zhao, S., Song, Y., Yang, P., Xiao, Z., Liu, Y., Li, Y., Shang, H., & Wang, Q. (2014). Design, synthesis, and antiviral, fungicidal, and insecticidal activities of Tetrahydro-beta-carboline-3-carbohydrazide derivatives. Journal of Agricultural and Food Chemistry, 62(41), 9987–9999.Google Scholar
  33. Lu, S., Wu, J. W., Liu, H., Zhao, J., Liu, K., Chuang, C., Lin, H., Tsai, W., & Ho, Y. (2011). The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. Journal of Biomedical Science, 18, 8.Google Scholar
  34. Mamiya, Y. (1983). Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus. Annual Review of Phytopathology, 21, 201–220.Google Scholar
  35. Massoulie, J., Pezzementi, L., Bon, S., Krejci, E., & Vallette, F. M. (1993). Molecular and cellular biology of cholinesterases. Progress in Neurobiology, 41(1), 31–91.Google Scholar
  36. Mirzaie, M., Nosratabadi, S. J., Derakhshanfar, A., & Sharifi, I. (2007). Antileishmanial activity of Peganum harmala extract on the in vitro growth of Leishmania major promastigotes in comparison to a trivalent antimony drug. Veterinarski Arhiv, 77(4), 365–375.Google Scholar
  37. Moloudizargari, M., Mikaili, P., Aghajanshakeri, S., Asghari, M. H., & Shayegh, J. (2013). Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacognosy Reviews, 7(14), 199–212.Google Scholar
  38. Nenaah, G. (2011). Toxicity and growth inhibitory activities of methanol extract and the beta-carboline alkaloids of Peganum harmala L. against two coleopteran stored-grain pests. Journal of Stored Products Research, 47(3), 255–261.Google Scholar
  39. Ntalli, N. G., & Caboni, P. (2012). Botanical Nematicides: A review. Journal of Agricultural and Food Chemistry, 60(40), 9929–9940.Google Scholar
  40. Opperman, C. H., & Chang, S. (1990). Plant-parasitic nematode acetylcholinesterase inhibition by carbamate and organophosphate Nematicides. Journal of Nematology, 22(4), 481–488.Google Scholar
  41. Park, I. K., Park, J. Y., Kim, K. H., Choi, K. S., Choi, I. H., Kim, C. S., & Shin, S. C. (2005). Nematicidal activity of plant essential oils and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology, 7(5), 767–774.Google Scholar
  42. Revathi, K., Chandrasekaran, R., Thanigaivel, A., Kirubakaran, S. A., Sathish-Narayanan, S., & Senthil-Nathan, S. (2013). Effects of Bacillus subtilis metabolites on larval Aedes aegypti L. Pesticide Biochemistry and Physiology, 107(3), 369–376.Google Scholar
  43. Rharrabe, K., Bakrim, A., Ghailani, N., & Sayah, F. (2007). Bioinsecticidal effect of harmaline on Plodia interpunctella development (Lepidoptera: Pyralidae). Pesticide Biochemistry and Physiology, 89(2), 137–145.Google Scholar
  44. Rydberg, E. H., Brumshtein, B., Greenblatt, H. M., Wong, D. M., Shaya, D., Williams, L. D., Carlier, P. R., Pang, Y. P., Silman, I., & Sussman, J. L. (2006). Complexes of Alkylene-linked Tacrine dimers with Torpedo c alifornica acetylcholinesterase: Binding of Bis (5)-tacrine produces a dramatic rearrangement in the active-site gorge. Journal of Medicinal Chemistry, 49(18), 5491–5500.Google Scholar
  45. Saeed, M., & Shawkat, J. N. (2014). Nematicidal effect of some botanical powders and poultry manure against the root-knot nematode Meloidogyne incognita (Kofoid and white) Chitwood infecting tomato plants. Egyptian Journal of Agronematology, 13(1), 160–171.Google Scholar
  46. Selkirk, M. E., Lazari, O., & Matthews, J. B. (2005). Functional genomics of nematode acetylcholinesterases. Parasitology, 131S, S3–S18.Google Scholar
  47. Sharma, S., Yadav, M., Gupta, S. P., Pandav, K., & Kumar, S. (2016). Spectroscopic and structural studies on the interaction of an anticancer beta-carboline alkaloid, harmine with GC and AT specific DNA oligonucleotides. Chemico-Biological Interactions, 260, 256–262.Google Scholar
  48. Shi, B., Cao, R., Fan, W., Guo, L., Ma, Q., Chen, X., Zhang, G., Qiu, L., & Song, H. (2013). Design, synthesis and in vitro and in vivo antitumor activities of novel bivalent beta-carbolines. European Journal of Medicinal Chemistry, 60, 10–22.Google Scholar
  49. Sodaeizadeh, H., Rafieiolhossaini, M., & Van Damme, P. (2010). Herbicidal activity of a medicinal plant, Peganum harmala L., and decomposition dynamics of its phytotoxins in the soil. Industrial Crops and Products, 31(2), 385–394.Google Scholar
  50. Song, H., Liu, Y., Liu, Y., Huang, Y., Li, Y., & Wang, Q. (2014). Design, synthesis, anti-TMV, fungicidal, and insecticidal activity evaluation of 1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid derivatives based on virus inhibitors of plant sources. Bioorganic & Medicinal Chemistry Letters, 24(22), 5228–5233.Google Scholar
  51. Waki, H., Park, K. W., Mitro, N., Pei, L., Damoiseaux, R., Wilpitz, D. C., Reue, K., Saez, E., & Tontonoz, P. (2007). The small molecule harmine is an antidiabetic cell-type-specific regulator of PPAR gamma expression. Cell Metabolism, 5(5), 357–370.Google Scholar
  52. Wu, J., Chen, Q., Cao, R., Yu, F., Wang, Z. & Peng, W. (2014). Harmine derivatives, intermediates used in their preparations, preparation processes and use thereof. Patent, US 08772311.Google Scholar
  53. Yang, Y., Cheng, X., Liu, W., Chou, G., Wang, Z., & Wang, C. (2015). Potent AChE and BChE inhibitors isolated from seeds of Peganum harmala Linn by a bioassay-guided fractionation. Journal of Ethnopharmacology, 168, 279–286.Google Scholar
  54. Yoshida, N. (2006). A strategy for controlling pine wilt disease and its application on-site. Journal of the Japanese Forest Society, 88(5), 422–428.Google Scholar
  55. Zhang, L., Teng, L., Gong, C., Liu, W., Cheng, X., Gu, S., Deng, Z., Wang, Z., & Wang, C. (2013). Simultaneous determination of harmine, harmaline and their metabolites-harmol and harmalol in beagle dog plasma by UPLC-ESI-MS/MS and its application to a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 85, 162–168.Google Scholar
  56. Zhao, T., Ding, K., Zhang, L., Cheng, X., Wang, C. & Wang, Z. (2013). Acetylcholinesterase and Butyrylcholinesterase inhibitory activities of beta-Carboline and Quinoline alkaloids derivatives from the plants of Genus Peganum. Journal of Chemistry (ID 717232).Google Scholar
  57. Zheng, X., Zhang, Z., Chou, G., Wu, T., Cheng, X., Wang, C., & Wang, Z. (2009). Acetylcholinesterase inhibitive activity-guided isolation of two new alkaloids from seeds of Peganum Nigellastrum Bunge by an in vitro TLC- bioautographic assay. Archives of Pharmacal Research, 32(9), 1245–1251.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect ToxicologySouth China Agricultural UniversityGuangzhouPeople’s Republic of China
  2. 2.Zhongshan Lanju Daily Chemical Industrial Co., Ltd.ZhongshanPeople’s Republic of China
  3. 3.School of Chemistry and Chemical EngineeringSun Yat–sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations