Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 1, pp 167–181 | Cite as

Effect of natural and synthetic Brassinosteroids on strawberry immune response against Colletotrichum acutatum

  • R. N. Furio
  • P. L. Albornoz
  • Y. Coll
  • G. M. Martínez Zamora
  • S. M. Salazar
  • G. G. Martos
  • J. C. Díaz RicciEmail author
Article

Abstract

Brassinosteroids (BRs) are steroidal essential compounds for plant growth and development. It was shown that the exogenous applications of BRs induce protection against different pathogens and can give plants tolerance/resistance to different abiotic stresses. The aim of this work was to evaluate the protective effect against the fungal pathogen Colletotrichum acutatum, the causal agent of anthracnose disease, on strawberry plants treated with 24-epibrasinolide (EP24) and a formulation based on a brassinosteroid spirostanic analogue DI-31 (BB16). Treatment with both compounds induced a defense response in strawberry plants of the cv. Pájaro against avirulent isolate (M11) of C. acutatum, being more effective at the lower concentration of both steroids (0.1 mg l−1), although the analogue BB16 showed a stronger effect than EP24. The evaluation of biochemical defense markers showed that strawberry plants treated with EP24 and BB16 increased the production of H2O2, O2.-, NO, calcium oxalate crystals and higher callose and lignin deposition as compared to the control plants. However, stomatal closure was only observed in plants treated with BB16. These results suggests that BB16 and EP24 can be used for the activation of innate immunity in strawberry plants, as a new strategy for crop health protection management, alternative to agrochemicals.

Keywords

Brassinosteroids Defense Strawberry 

Abbreviations

ANOVA

Analysis of variance

BB16

Biobras-16

BRs

Brassinosteroids

DAB

3,3-diaminobenzidine

DAF-FM-DA

4-amino-5-methylamino-2´,7´-difluorofluorescein diacetate

DSR

Disease Severity Ratings

EBL

24-epibrassinolide

EP24

24-epibrasinolide

ET

Ethylene

H2DCF-DA

2',7'-dichlorodihydrofluorescein diacetate

IR

Induced resistance

JA

Jasmonic acid

MES

2-(N-morpholino) ethanesulfonic acid

NBT

Nitro blue tetrazolium

PDA

Potato dextrose agar

ROS

Reactive oxygen species

SA

Salicylic Acid

Notes

Acknowledgements

This paper was partially supported with grants of the Universidad Nacional de Tucumán (CIUNT 26/D544), and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2013-2075). Authors are grateful to Strawberry Active Germplasm Bank (BGA) from Universidad Nacional de Tucumán (UNT) and Ing. Cecilia Lemme for providing strawberry plants. RNF and GGM are CONICET fellowship, and MGMZ and JCDR is member of CONICET.

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The manuscript has not been published and is not under consideration for publication elsewhere. All authors have approved the manuscript and agree with submission to European Journal of Plant Pathology. The research was conducted in the absence of any commercial relationships that could be considered as a potential conflict of interest.

References

  1. Adaskaveg, J. E., & Hartin, R. J. (1997). Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology, 87, 979–987.CrossRefGoogle Scholar
  2. Agurla, S., Gayatri, G., & Raghavendra, A. S. (2014). Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide, 43, 89–96.CrossRefGoogle Scholar
  3. Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., & Caballero, J. L. (2011). The strawberry plant defense mechanism: A molecular review. Plant and Cell Physiology, 52, 1873–1903.CrossRefGoogle Scholar
  4. Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373–399.CrossRefGoogle Scholar
  5. Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.CrossRefGoogle Scholar
  6. Baudouin, E. (2011). The language of nitric oxide signaling. Plant Biology, 13, 233–242.CrossRefGoogle Scholar
  7. Boller, T., & Felix, G. (2009). A renaissance of elicitors: Perception of microbe associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.CrossRefGoogle Scholar
  8. Canales, E., Coll, Y., Hernández, I., Portieles, R., Rodríguez García, M., López, Y., et al. (2016). ‘Candidatus Liberibacter asiaticus,’ causal agent of citrus huanglongbing, is reduced by treatment with brassinosteroids. PLoS One, 11, e0146223.CrossRefGoogle Scholar
  9. Chalfoun, N. R., Grellet-Bournonville, C. F., Martínez Zamora, M. G., Díaz-Perales, A., Castagnaro, A. P., & Díaz Ricci, J. C. (2013). Purification and characterization of AsES: A subtilisin secreted by Acremonium strictum is a novel plant defence elicitor. Journal of Biological Chemistry, 288, 14098–14113.CrossRefGoogle Scholar
  10. Choi, Y.-E., Harada, E., Wada, M., Tsuboi, H., Morita, Y., Kusano, T., & Sano, H. (2001). Detoxification of cadmium in tobacco plants: Formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta, 213, 45–50.CrossRefGoogle Scholar
  11. Coll, Y. (2015). Determinación del papel del brasinoesteroide 24-epibrasinólida en la respuesta defensiva de Citrus x aurantifolia (Christm) “Swingle” frente a la infección con “Candidatus Liberibacterasiaticus”. Tesis en opción al grado científico de Doctor en Ciencias Biológicas. Universidad de la Habana, La Habana, Cuba.Google Scholar
  12. Coll, M.F., Jomarrón, R.I.M., Robaina, R.C.M., Alonso, B.E.M. & Cabrera, P.M.T. (1995). Polyhydroxyspirostanones as Plant Growth Regulators. PCT Int. Appl. CO 7J 71.100, AOIN 45.00 WO 97.13780.Google Scholar
  13. D’Ambrogio de Argüeso, A. (1986). Manual de técnicas de histología vegetal. Editora Hemisferio Sur, Buenos Aires, 83 pp.Google Scholar
  14. Delp, B. R., & Milholland, R. D. (1980). Evaluating strawberry plants for resistance to Colletotrichum fragariae. PlantDisease, 64, 1071–1073.Google Scholar
  15. Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C.W. (2013). InfoStat version 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.
  16. Ding, J., Shi, K., & Zhou, Y. H. (2009). Effects of root and foliar applications of 24-epibrassinolide on Fusarium wilt and antioxidant metabolism in cucumber roots. Hortscience, 44, 1340–1345.CrossRefGoogle Scholar
  17. Doke, N. (1983). Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiological Plant Pathology, 23, 359–367.CrossRefGoogle Scholar
  18. Franceschi, V. (2001). Calcium oxalate in plants. Trends in Plant Science, 6, 331.CrossRefGoogle Scholar
  19. Franceschi, V. R., & Horner, H. T. (1980). Calcium oxalate crystals in plants. Botanical Review, 46, 361–427.CrossRefGoogle Scholar
  20. Franceschi, V. R., & Schueren, A. M. (1986). Incorporation of strontium into plant calcium oxalate crystals. Protoplasma, 130, 199–205.CrossRefGoogle Scholar
  21. Freeman, S., & Katan, T. (1997). Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology, 87, 516–521.CrossRefGoogle Scholar
  22. Fujikawa, Y., Nakanishi, T., Kawakami, H., Yamasaki, K., Sato, M. H., Tsuji, H., et al. (2014). Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format. Rice, 7, 11.CrossRefGoogle Scholar
  23. Galletti, R., Denoux, C., Gambetta, S., Dewdney, J., Ausubel, F. M., De Lorenzo, G., & Ferrari, S. (2008). The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiology, 148, 1695–1706.CrossRefGoogle Scholar
  24. Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., et al. (2006). Early signaling events induced by elicitors of plant defences. Molecular Plant-Microbe Interactions, 19, 711–724.CrossRefGoogle Scholar
  25. Garcia-Mata, C., Gay, R., Sokolovski, S., Hills, A., Lamattina, L., & Blatt, M. R. (2003). Nitric oxide regulates K+ and cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Sciences, USA, 100, 11116–11121.CrossRefGoogle Scholar
  26. Gaupels, F., Kuruthukulangarakoola, G. T., & Durner, J. (2011). Upstream and downstream signals of nitric oxide in pathogen defense. Current Opinion in Plant Biology, 14, 707–714.CrossRefGoogle Scholar
  27. Gendron, J. M., Liu, J., Fan, M., Bai, M., Wenkel, S., & Springer, P. S. (2012). Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proceedings of the National Academy of Sciences. USA, 109, 21152–21157.CrossRefGoogle Scholar
  28. Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N. B., Worley, J. F., Warthen, J. D., et al. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassicanapu spollen. Nature, 281, 216–217.CrossRefGoogle Scholar
  29. Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901–908.CrossRefGoogle Scholar
  30. Howard, C. M., Maas, J. L., Chandler, C. K., & Albregts, E. E. (1992). Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Disease, 76, 976–981.CrossRefGoogle Scholar
  31. Kirschbaum, D. S., & Hancock, J. F. (2000). The strawberry industry in South America. HortScience, 35, 807–811.CrossRefGoogle Scholar
  32. Kirschbaum, D. S., Vicente, C. E., Cano-Torres, M. A., Gambardella-Casanova, M., Veizaga-Pinto, F. K., & Correa-Antunes, L. E. (2016). Strawberry in South America: From the Caribbean to Patagonia. Acta Horticulturae, 1156, 947–956.Google Scholar
  33. Kwak, J. M., Nguyen, V., & Schroeder, J. I. (2006). The role of reactive oxygen species in hormonal responses. Plant Physiology, 141, 323–329.CrossRefGoogle Scholar
  34. Lamattina, L., Garcia-Mata, C., Graziano, M., & Pagnussat, G. (2003). Nitric oxide: The versatility of an extensive signal molecule. Annual Review of Plant Biology, 54, 109–136.CrossRefGoogle Scholar
  35. Li, X., Ma, H., Jia, P., Wang, J., Jia, L., Zhang, T., et al. (2012). Responses of seedling growth and antioxidant activity to excess iron and copper in Triticuma estivum L. Ecotoxicology and Environmental Safety, 86, 47–53.CrossRefGoogle Scholar
  36. Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273–278.CrossRefGoogle Scholar
  37. Martin, F. W. (1959). Staining and observing pollen tubes in the style by means of fluorescence. Stain Technology, 34, 125–128.CrossRefGoogle Scholar
  38. Mazorra, L. M., Núñez, M., Hechavarria, M., Coll, F., & Sánchez-Blanco, M. J. (2002). Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biologia Plantarum, 45, 593–596.CrossRefGoogle Scholar
  39. Mazorra, L. B., Núñez, M., Nápoles, M. C., Yoshida, S., Robaina, C., Coll, F., & Asami, T. (2004). Effects of structural analogs of brassinosteroids on the recovery of growth inhibition by a specific brassinosteroid biosynthesis inhibitor. Plant Growth Regulation, 44, 183–185.Google Scholar
  40. Melotto, M., Panchal, S., & Roy, D. (2014). Plant innate immunity against human bacterial pathogens. Frontiers in Microbiology, 5, 411.CrossRefGoogle Scholar
  41. Millet, Y. A., Danna, C. H., Clay, N. K., Songnuan, W., Simon, M. D., Werck-Reichhart, D., & Ausubel, F. M. (2010). Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell, 22, 973–990.CrossRefGoogle Scholar
  42. Mitchell, J. W., Mandava, N. B., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins: A new family of plant hormones from rape pollen. Nature, 225, 1065–1066.CrossRefGoogle Scholar
  43. Nahar, K., Kyndt, T., Hause, B., Höfte, M., & Gheysen, G. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant-Microbe Interactions, 26, 106–115.CrossRefGoogle Scholar
  44. Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., et al. (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33, 887–898.CrossRefGoogle Scholar
  45. Nam, K. H., & Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 110, 203–212.CrossRefGoogle Scholar
  46. Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.CrossRefGoogle Scholar
  47. Nie, W. F., Wang, M. M., Xia, X. J., Zhou, Y. H., Shi, K., Chen, Z., & Yu, J. Q. (2013). Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell & Environment, 36, 789–803.CrossRefGoogle Scholar
  48. Nuñez, M., Mazzafera, P., Mazorra, L. M., Siqueira, W. J., & Zullo, M. A. T. (2003). Influence of brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 47, 67–70.CrossRefGoogle Scholar
  49. Planchet, E., & Kaiser, W. M. (2006). Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: A comparison using abiotic and biotic NO sources. Journal of Experimental Botany, 57, 3043–3055.CrossRefGoogle Scholar
  50. Ramulu, K. F., Dijkhuis, P., Rutgers, E., Blaas, J., Verbeek, V. H. J., Verhoeven, H. A., & ColinjHooymans, C. M. (1995). Microprotoplast fusion technique a new tool for gene transfer between sexually-incongruent plant species. Euphytica, 85, 255–268.CrossRefGoogle Scholar
  51. Roth, U., Friebe, A., & Schnabl, H. (2000). Resistance induction in plants by a brassinosteroidcontaining extract of Lychnisviscaria L. Zeitschrift für Naturforschung, 55, 552–559.CrossRefGoogle Scholar
  52. Salazar, S. M., Castagnaro, A. P., Arias, M. E., Chalfoun, N., Tonello, U., & Díaz Ricci, J. C. (2007). Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. European Journal of Plant Pathology, 117, 109–122.CrossRefGoogle Scholar
  53. Serna, M., Hernández, F., Coll, F., & Amorós, A. (2012). Brassinosteroid analogues effect on yield and quality parameters of field-grown lettuce (Lactuca sativa L.). Scientia Horticulturae, 143, 29–37.CrossRefGoogle Scholar
  54. Simontacchi, M., Garcia-Mata, C., Bartoli, C. G., Santa-Maria, G. E., & Lamattina, L. (2013). Nitric oxide as a key component in hormone-regulated processes. Plant Cell Reports, 32, 853–866.CrossRefGoogle Scholar
  55. Smith, B. J., & Black, L. L. (1990). Morphological, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Disease, 74, 69–76.CrossRefGoogle Scholar
  56. Thakur, M., & Sohal, B. S. (2013). Role of elicitors in inducing resistance in plants against pathogen infection: A review. ISRN Biochemistry, 2013, 1–10.CrossRefGoogle Scholar
  57. Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants.H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 11, 1187–1194.CrossRefGoogle Scholar
  58. Tortora, M. L., Díaz-Ricci, J. C., & Pedraza, R. O. (2012). Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant and Soil, 356, 279–290.CrossRefGoogle Scholar
  59. Trapet, P., Kulik, K., Lamotte, O., Jeandroz, S., Bourque, S., Nicolas-Francès, V., et al. (2014). NO signaling in plant immunity: A tale of messengers. Phytochemistry, 112, 72–79.CrossRefGoogle Scholar
  60. Vance, C. P., Kirk, T. K., & Sherwood, R. T. (1980). Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18, 259–288.CrossRefGoogle Scholar
  61. Vasyukova, N. J., Chalenko, G. I., Kaneva, I. M., Khripach, V. A., & Ozeretskovskaya, O. L. (1994). Brassinosteroids and potato late blight. Applied Biochemistry and Microbiology, 30, 464–470.Google Scholar
  62. Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S., & Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 410, 380–383.CrossRefGoogle Scholar
  63. Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., et al. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150, 801–814.CrossRefGoogle Scholar
  64. Xia, X. J., Zhou, Y. H., Ding, J., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2011). Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytologist, 191, 706–720.CrossRefGoogle Scholar
  65. Xiao, C. L., Mackenzie, S. J., & Legard, D. E. (2004). Genetic and pathogenic analyses of Colletotrichum gloeosporioides isolates from strawberry and noncultivated hosts. Phytopathology, 94, 446–453.CrossRefGoogle Scholar
  66. Yang, Y.-Y., Jung, J.-Y., Song, W.-Y., Suh, H.-S., & Lee, Y. (2000). Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism tolerance. Plant Physiology, 124, 1019–1026.CrossRefGoogle Scholar
  67. Ye, W., Hossain, M. A., Munemasa, S., Nakamura, Y., Mori, I. C., & Murata, Y. (2013). Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells. Journal of Plant Physiology, 170, 1212–1215.CrossRefGoogle Scholar
  68. Yoshioka, H., Mase, K., Yoshioka, M., Kobayashi, M., & Asai, S. (2011). Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric Oxide, 25, 216–222.CrossRefGoogle Scholar
  69. Zeng, W., Melotto, M., & He, S. Y. (2010). Plant stomata: A check point of host immunity and pathogen virulence. Current Opinion in Biotechnology, 21, 599–603.CrossRefGoogle Scholar
  70. Zeyen, R. J., Carver, T. L. W., & Lyngkjaer, M. F. (2002). Epidermal cell papillae. In The powdery mildew: A comprehensive treatise (Belanger RR, Bushnell WR, Dik AJ, Carver TLW). St. Paul, MN (pp. 107–125). The American Phytopathological Society.Google Scholar
  71. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.CrossRefGoogle Scholar
  72. Zindler-Frank, E. (1991). Calcium oxalate crystal formation and growth in two legume species as altered by strontium. Botanica Acta, 104, 229–232.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • R. N. Furio
    • 1
  • P. L. Albornoz
    • 2
  • Y. Coll
    • 3
  • G. M. Martínez Zamora
    • 1
  • S. M. Salazar
    • 4
    • 5
  • G. G. Martos
    • 1
  • J. C. Díaz Ricci
    • 1
    Email author
  1. 1.INSIBIO, CONICET-UNTChacabucoArgentina
  2. 2.Facultad de Ciencias Naturales (UNT), y Fundación Miguel Lillo (FML)San Miguel de TucumánArgentina
  3. 3.Universidad La HabanaHavanaCuba
  4. 4.Instituto Nacional de Tecnología Agropecuaria, EEAFFamailláArgentina
  5. 5.Facultad de Agronomía y Zootecnia, UNTSan Miguel de TucumánArgentina

Personalised recommendations