Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 3, pp 577–588 | Cite as

Molecular characterization and pathogenicity of Alternaria species on wheat and date palms in Oman

  • H. H. Al-Nadabi
  • S. S. N. Maharachchikumbura
  • H. Agrama
  • M. Al-Azri
  • A. Nasehi
  • A. M. Al-Sadi
Article
  • 128 Downloads

Abstract

This study was conducted to investigate the Alternaria species associated with leaf spot of date palm and wheat in Oman. Out of 98 date palm leaf samples and 146 wheat leaf samples, Alternaria was isolated from 27 and 23% of the samples developing leaf spot symptoms, respectively. Identification of Alternaria isolates using sequences of the internal transcribed spacer region of the ribosomal RNA (ITS rRNA), glyceraldehyde-3-phosphate dehydrogenase (GPDH), translation elongation factor (TEF) and RNA polymerase II subunit (RPB2) genes, showed that the isolates belong to seven Alternaria species or species complexes. A. burnsii - A. tomato and A. arborescens species complexes (58 and 4%, respectively) and A. alternata (38%) were the species recovered from the symptomatic date palm leaves. A. alternata (67%), A. burnsii - A. tomato species complex (15%), A. jacinthicola (3%), A. ventricosa (3%), A. slovaca (6%) and Alternaria caespitosa (6%) were isolated from wheat. Pathogenicity test showed that tested isolates of A. alternata (DPM19, WDK12), A. burnsii - A. tomato species complex (DPM31), A. jacinthicola (WBR4) and A. slovaca (WDK9, WDK7) were pathogenic on date palm, while A. alternata (DPM19, WDK12), A. burnsii - A. tomato species complex (DPM31, WDK11) and A. slovaca (WDK9, WDK7) were pathogenic on wheat. This is the first report of date palm and wheat as new hosts for A. burnsii - A. tomato species complex and the first reports of A. burnsii - A. tomato species complex, A. caespitosa A. slovaca, and A. ventricosa in Oman. The study shows that several species of Alternaria are associated with leaf spot in date palm and wheat in Oman, with some isolates having the ability to cause infection in both hosts.

Keywords

Date palms Pathogenicity Phylogeny Section Alternaria Section Infectoriae Wheat 

Notes

Acknowledgments

Authors would like to acknowledge financial support to the study from Sultan Qaboos University and Oman Animal and Plant Genetic Resources Center through the projects IG/AGR/CROP/13/01 and EG/AGR/CROP/16/01. Thanks are due to farmers and extension officers for their help in the collection of samples.

Compliance with ethical standards

Conflict of interest

This is to confirm that this manuscript was not submitted for publication to any other journal. It is only submitted to this journal, EJPP. Authors have no conflict of interest.

References

  1. Abata, L. K., Paz, I. A., Viera, W., & Flores, F. J. (2016). First report of alternaria rot caused by Alternaria alternata on peach in ecuador. Plant Disease, 100(11), 2323.  https://doi.org/10.1094/pdis03160318pdn. CrossRefGoogle Scholar
  2. Abed, R. M. M., Al-Sadi, A. M., Al-Shehi, M., Al-Hinai, S., & Robinson, M. D. (2013). Diversity of free-living and lichenized fungal communities in biological soil crusts of the Sultanate of Oman and their role in improving soil properties. Soil Biology and Biochemistry, 57, 695–705.  https://doi.org/10.1016/j.soilbio.2012.07.023.CrossRefGoogle Scholar
  3. Akhtar, N., Bashir, U., & Mushtaq, S. (2014). First report of leaf spot of rice caused by Alternaria arborescens in Pakistan. Plant Disease, 98(6), 846–846.CrossRefGoogle Scholar
  4. Al-Riyami, M., Victor, R., Seena, S., Elshafie, A. E., & Bärlocher, F. (2009). Leaf decomposition in a mountain stream in the sultanate of Oman. International Review of Hydrobiology, 94(1), 16–28.  https://doi.org/10.1002/iroh.200811085.CrossRefGoogle Scholar
  5. Al-Sadi, A. M. (2016). Variation in resistance to spot blotch and the aggressiveness of Bipolaris sorokiniana on barley and wheat cultivars. Journal of Plant Pathology, 98(1), 97–103.  https://doi.org/10.4454/jpp.v98i1.029. CrossRefGoogle Scholar
  6. Al-Sadi, A. M., Al-Alawi, Z. A., Deadman, M. L., & Patzelt, A. (2014). Etiology of four foliar and root diseases of wild plants in Oman. Canadian Journal of Plant Pathology, 36(4), 517–522.  https://doi.org/10.1080/07060661.2014.965219.CrossRefGoogle Scholar
  7. Al-Sadi, A. M., Al-Jabri, A. H., Al-Mazroui, S. S., & Al-Mahmooli, I. H. (2012). Characterization and pathogenicity of fungi and oomycetes associated with root diseases of date palms in Oman. Crop Protection, 37, 1–6.  https://doi.org/10.1016/j.cropro.2012.02.011.CrossRefGoogle Scholar
  8. Al-Sadi, A. M., Al-Masoodi, R. S., Al-Ismaili, M., & Al-Mahmooli, I. H. (2015). Population structure and development of resistance to hymexazol among Fusarium solani populations from date palm, citrus and cucumber. Journal of Phytopathology, 163(11-12), 947–955.  https://doi.org/10.1111/jph.12397.CrossRefGoogle Scholar
  9. Al-Sadi, A. M., Al-Said, F. A., Al-Kiyumi, K. S., Al-Mahrouqi, R. S., Al-Mahmooli, I. H., & Deadman, M. L. (2011). Etiology and characterization of cucumber vine decline in Oman. Crop Protection, 30(2), 192–197.  https://doi.org/10.1016/j.cropro.2010.10.013.CrossRefGoogle Scholar
  10. Avenot, H. F., Solorio, C., Morgan, D. P., & Michailides, T. J. (2016). Sensitivity and cross-resistance patterns to demethylation-inhibiting fungicides in California populations of Alternaria alternata pathogenic on pistachio. Crop Protection, 88, 72–78.CrossRefGoogle Scholar
  11. Berbee, M. L., Pirseyedi, M., & Hubbard, S. (1999). Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 91, 964–977.CrossRefGoogle Scholar
  12. Dagno, K., Lahlali, R., Diourté, M., & Jijakli, H. M. (2011). Production and oil-emulsion formulation of Cadophora malorum and Alternaria jacinthicola, two biocontrol agents against Water Hyacinth (Eichhornia crassipes). African Journal of Microbiology Research, 5(8), 924–929.CrossRefGoogle Scholar
  13. Duan, S., Ma, X., Chen, W., Wan, W., He, Y., Ma, Y., et al. (2016). Transcriptomic profile of tobacco in response to Alternaria longipes and Alternaria alternata infections. Scientific Reports, 6.  https://doi.org/10.1038/srep25635.
  14. Esmaeili Taheri, A., Chatterton, S., Foroud, N. A., Gossen, B. D., & McLaren, D. L. (2017). Identification and community dynamics of fungi associated with root, crown, and foot rot of field pea in western Canada. European Journal of Plant Pathology, 147(3), 489–500.  https://doi.org/10.1007/s10658-016-1017-4.CrossRefGoogle Scholar
  15. Fetch, T., Mitchell Fetch, J., & Xue, A. (2015). Races of Puccinia graminis on barley, oat, and wheat in Canada in 2007 and 2008. Canadian Journal of Plant Pathology, 37(3), 331–341.  https://doi.org/10.1080/07060661.2015.1066865.CrossRefGoogle Scholar
  16. Gannibal, P. B., Orina, A. S., Mironenko, N. V., & Levitin, M. M. (2014). Differentiation of the closely related species, Alternaria solani and A. tomatophila, by molecular and morphological features and aggressiveness. European Journal of Plant Pathology, 139(3), 609–623.  https://doi.org/10.1007/s10658-014-0417-6.CrossRefGoogle Scholar
  17. Gur, L., Reuveni, M., & Cohen, Y. (2017). Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by Alternaria alternata f. sp. mali on cv. Pink lady in Israel. European Journal of Plant Pathology, 147(3), 695–708.  https://doi.org/10.1007/s10658-016-1037-0.CrossRefGoogle Scholar
  18. Harteveld, D. O. C., Akinsanmi, O. A., & Drenth, A. (2013). Multiple Alternaria species groups are associated with leaf blotch and fruit spot diseases of apple in Australia. Plant Pathology, 62(2), 289–297.  https://doi.org/10.1111/j.1365-3059.2012.02637.x.CrossRefGoogle Scholar
  19. Junk, J., Kouadio, L., Delfosse, P., & El Jarroudi, M. (2016). Effects of regional climate change on brown rust disease in winter wheat. Climate Change, 135, 439.  https://doi.org/10.1007/s10584-015-1587-8.CrossRefGoogle Scholar
  20. Kahl, S. M., Ulrich, A., Kirichenko, A. A., & Müller, M. E. H. (2015). Phenotypic and phylogenetic segregation of Alternaria infectoria from small-spored Alternaria species isolated from wheat in Germany and Russia. Journal of Applied Microbiology, 119(6), 1637–1650.  https://doi.org/10.1111/jam.12951.CrossRefPubMedGoogle Scholar
  21. Lawrence, D. P., Gannibal, P. B., Peever, T. L., & Pryor, B. M. (2013). The sections of alternaria: Formalizing species-group concepts. Mycologia, 105(3), 530–546.  https://doi.org/10.3852/12-249.CrossRefPubMedGoogle Scholar
  22. Lawrence, D. P., Rotondo, F., & Gannibal, P. B. (2016). Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycological Progress, 15(1).  https://doi.org/10.1007/s11557-015-1144-x.
  23. Mercado Vergnes, D., Renard, M. E., Duveiller, E., & Maraite, H. (2006). Identification of Alternaria spp. on wheat by pathogenicity assays and sequencing. Plant Pathology, 55(4), 585–593.  https://doi.org/10.1111/j.1365-3059.2006.01391.x. CrossRefGoogle Scholar
  24. Moghal, S. M., Shivanathan, P., Mani, A., Al-Zidjali, A. D., Al-Zidjali, T. S., & Al-Raeesy, Y. M. (1993). Status of Pests and Diseases in Oman: Series 1: Plant Diseases in the Batinah. Muscat: Ministry of Agriculture and Fisheries.Google Scholar
  25. Moslemi, A., Ades, P. K., Groom, T., Nicolas, M. E., & Taylor, P. W. J. (2017). Alternaria infectoria and Stemphylium herbarum, two new pathogens of pyrethrum (Tanacetum cinerariifolium) in Australia. Australasian Plant Pathology, 46(1), 91–101.  https://doi.org/10.1007/s13313-016-0463-y.CrossRefGoogle Scholar
  26. Munhuweyi, K., Lennox, C. L., Meitz-Hopkins, J. C., Caleb, O. J., & Opara, U. L. (2016). Major diseases of pomegranate (Punica granatum L.), their causes and management—A review. Scientia Horticulturae, 211, 126–139.  https://doi.org/10.1016/j.scienta.2016.08.016.CrossRefGoogle Scholar
  27. Özer, G., & Bayraktar, H. (2015). Determination of fungal pathogens associated with Cuminum cyminum in Turkey. Plant Protection Science, 51(2), 74–79.  https://doi.org/10.17221/51/2014-pps. CrossRefGoogle Scholar
  28. Pane, C., Fratianni, F., Parisi, M., Nazzaro, F., & Zaccardelli, M. (2016). Control of Alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts. Crop Protection, 84, 81–87.  https://doi.org/10.1016/j.cropro.2016.02.015.CrossRefGoogle Scholar
  29. Park, M. S., Romanoski, C. E., & Pryor, B. M. (2008). A re-examination of the phylogenetic relationship between the causal agents of carrot black rot, Alternaria radicina and A. carotiincultae. Mycologia, 100(3), 511–527.  https://doi.org/10.3852/07-186r1.CrossRefPubMedGoogle Scholar
  30. Pavón, M. A., González, I., Rojas, M., Pegels, N., Martín, R., & García, T. (2011). PCR detection of alternaria spp. in processed foods, based on the internal transcribed spacer genetic marker. Journal of Food Protection, 74(2), 240–247.  https://doi.org/10.4315/0362-028x.jfp-10-110.CrossRefPubMedGoogle Scholar
  31. Perelló, A., & Sisterna, M. (2008). Formation of Lewia infectoria, the teleomorph of Alternaria infectoria, on wheat in Argentina. Australasian Plant Pathology, 37(6), 589–591.  https://doi.org/10.1071/ap08060.CrossRefGoogle Scholar
  32. Shakir, A. S., Mirza, J. H., Sahi, S. T., & Ansar, M. (1995). First report of Alternaria burnsii: The causal organism of cumin blight in Pakistan. Pakistan Journal of Phytopathology, 7(2), 219.Google Scholar
  33. Shinha, K. K., & Bhatnagar, D. (1998). Mycotoxins in Agriculture and Food Safety: Marcel Decker Inc. New York.Google Scholar
  34. Silvestro, D., & Michalak, I. (2012). RaxmlGUI: a graphical front-end for RAxML. Organisms, Diversity and Evolution, 12(4), 335–337.CrossRefGoogle Scholar
  35. Tanahashi, M., Nakano, T., Akamatsu, H., Kodama, M., Otani, H., & Osaki-Oka, K. (2016). Alternaria alternata apple pathotype (A. mali) causes black spot of European pear. European Journal of Plant Pathology, 145(4), 787–795.  https://doi.org/10.1007/s10658-016-0866-1.CrossRefGoogle Scholar
  36. Thomma, B. P. H. J. (2003). Alternaria spp.: From general saprophyte to specific parasite. Molecular Plant Pathology, 4(4), 225–236.  https://doi.org/10.1046/j.1364-3703.2003.00173.x.CrossRefPubMedGoogle Scholar
  37. Villalobos, M. D. C., Serradilla, M. J., Martín, A., Hernández-León, A., Ruíz-Moyano, S., & Córdoba, M. D. G. (2017). Characterization of microbial population of breba and main crops (Ficus carica) during cold storage: Influence of passive modified atmospheres (MAP) and antimicrobial extract application. Food Microbiology, 63, 35–46.  https://doi.org/10.1016/j.fm.2016.10.035.CrossRefPubMedGoogle Scholar
  38. Woudenberg, J. H. C., Groenewald, J. Z., Binder, M., & Crous, P. W. (2013). Alternaria redefined. Studies in Mycology, 75, 171–212.  https://doi.org/10.3114/sim0015.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Woudenberg, J. H. C., Seidl, M. F., Groenewald, J. Z., de Vries, M., Stielow, J. B., Thomma, B. P. H. J., et al. (2015). Alternaria section Alternaria: Species, formae speciales or pathotypes? Studies in Mycology, 82, 1–21.  https://doi.org/10.1016/j.simyco.2015.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Xu, S., Ni, Z., Ma, L., & Zheng, X. (2017). Control of Alternaria rot of cherry tomatoes by food-grade Laurus nobilis essential oil microemulsion. Journal of Food Safety, 37(1).  https://doi.org/10.1111/jfs.12286.
  41. Zhu, X. Q., & Xiao, C. L. (2015). Phylogenetic, morphological, and pathogenic characterization of Alternaria species associated with fruit rot of blueberry in California. Phytopathology, 105(12), 1555–1567.  https://doi.org/10.1094/phyto-05-15-0122-r.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • H. H. Al-Nadabi
    • 1
  • S. S. N. Maharachchikumbura
    • 1
  • H. Agrama
    • 1
  • M. Al-Azri
    • 2
  • A. Nasehi
    • 1
  • A. M. Al-Sadi
    • 1
  1. 1.Department of Crop Sciences, College of Agricultural and Marine SciencesSultan Qaboos UniversityAl KhoudOman
  2. 2.Directorate of ResearchMinistry of Agriculture and Fisheries WealthJumahOman

Personalised recommendations