European Journal of Plant Pathology

, Volume 153, Issue 1, pp 181–198 | Cite as

Genetic structure of Magnaporthe oryzae populations in three island groups in the Philippines

  • Ana Liza C. Lopez
  • Christian Joseph R. CumagunEmail author


Genetic structure of the rice blast pathogen, Magnaporthe oryzae was characterized using 453 monoconidial isolates collected from different rice agroecosystems from Luzon, Visayas and Mindanao, the three island groups in the Philippines in experimental plots and in farmer fields. Using 12 microsatellite markers, a total of 93 new multi-locus genotypes (MLGs) were determined when compared to the reference isolates representing the genotypes previously published. Analysis revealed a weak geographic structuring of pathogen genotypes, with some of those collected from Luzon clustering with those from Visayas or Mindanao. Nevertheless, none of the strains from Mindanao clustered with those from the Visayas and none from Visayas clustered with those from Mindanao. This structure likely results from limited natural migration and from some events of long distance migration, probably through the transport of infected seeds. Significant genetic differences were noted on isolates collected from distinct rice agroecosystems. A subset of 30 isolates, representative of MLGs, were tested for fertility status. Of these, eight induced the production of perithecia, of which six were male-fertile and two were also female-fertile. In addition, MAT1.1 isolates represented 36% of our sample whereas it represented only 5% in the collection of reference strains. Pathogenicity test of a subset of 24 isolates inoculated to 16 differential rice varieties demonstrated that most isolates were avirulent to varieties which carry the resistance genes Pi1, Pi33 Pi9, Pikm, and the combination of Piz and Pish.


Blast Genetic structure Experimental plots Farmer fields Rice agroecosystems Resistance genes 



Genotypic data used in this work were produced through molecular genetic analysis technical facilities of the labex “Centre Méditerranéen de l’Environnement et de la Biodiversité”. This research was supported by grants from Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Southeast Regional Center for Graduate Study in Agriculture (SEARCA) and the Embassy of France through the Filipino-French Scientific Cooperation Program (FFSC). This work was also partly funded by the Philippines’ Department of Science and Technology (DOST) through its Accelerated Science and Technology Human Resource Development Program (ASTHRDP) program availed by the first author. We would like to thank Dr. Didier Tharreau and many of those involved in the collection and isolation of M. oryzae especially Ms. Loida M. Perez of PhilRice and Dr. Alfredo M. Sinohin of UPLB.

Compliance with ethical standards

Ethical statement

The authors hereby declare no potential conflict of interest. This research does not involve 14 human participants and/or animals.

Supplementary material

10658_2018_1546_MOESM1_ESM.docx (45 kb)
Supplementary Table 1 (DOCX 44 kb)


  1. Adreit, H., Santoso, Andriantsimialona, D., Utami, D. W., Notteghem, J. L., Lebrun, M. H., & Tharreau, D. (2007). Microsatellite markers for population studies of the rice blast fungus, Magnaporthe grisea. Molecular Ecology Notes, 7, 67–670.CrossRefGoogle Scholar
  2. Ahn. S.W., & Mukelar. A. (1985) Rice blast management under upland conditions. Progress in upland rice research: Proceedings of the IRRI conference on 4 – 8 march 1985 held in Jakarta, Indonesia pp. 363–374.Google Scholar
  3. Ballini, E., Berruyer, R., Morel, J .B., Lebrun, M. H., Notteghem, J.L., & Tharreau, D. (2007). Modern elite rice varieties of the ‘Green Revolution’ have retained a large introgression from wild rice around the Pi33 rice blast resistance locus. New Phytologist 175, 340–350.
  4. Bonman, J. M. (1992). Durable resistance to rice blast disease-environmental influences. Euphytica, 63, 115–123.CrossRefGoogle Scholar
  5. Burdon, J. J., & Silk, J. (1997). Sources and patterns of diversity in plant-pathogenic fungi. Phytopathology, 87, 664–669.CrossRefGoogle Scholar
  6. Chen, D. H., Zeigler, R. S., Leung, H., & Nelson, R. J. (1995). Population structure of Pyricularia grisea at two screening sites in the Philippines. Phytopathology, 85, 1011–1020.CrossRefGoogle Scholar
  7. Consolo, V. F., Cordo, C. A., & Salerno, G. L. (2005). Mating-type distribution and fertility status in Magnaporthe grisea populations from Argentina. Mycopathologia, 160, 285–290.CrossRefGoogle Scholar
  8. Hua, L., Wu, J., Chen, C., Wu, W., He, X., Lin, F., Wang, L., Ashikawa, I., Matsumoto, T., Wang, L., & Pan, Q. (2012). The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theoretical and Applied Genetics, 125, 1047–1055.CrossRefGoogle Scholar
  9. Huang, J., Si, W., Deng, Q., Li, P., & Yang, S. (2014). Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genetics, 15, 45.CrossRefGoogle Scholar
  10. Kang, S., & Lee, Y. H. (2000). Population structure and race variation of the rice blast fungus. Plant Pathology Journal, 16, 1–8.Google Scholar
  11. Lara-Alvarez, I., Tharreau, D., Aguilar-Portero, M., & Castejon-Muñoz, M. (2010). Evidence for rapid changes in the population genetic structure of Magnaporthe oryzae in southern Spain. Journal of Phytopathology, 158, 785–791.CrossRefGoogle Scholar
  12. Leach, J,E, Vera Cruz, C,M., Bai, J.F., & Leung, H., (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annual Review of Phytopathology, 39,187–224.Google Scholar
  13. Lee, F. N. (1994). Rice breeding programs, blast epidemics and blast management in the United States. In R. S. Zeigler, S. A. Leong, & P. S. Teng (Eds.), Rice blast disease (pp. 489–500). Wallingford, UK: CAB International.Google Scholar
  14. Leung, H., Borromeo, M. A., & Notteghem, J. L. (1988). Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology, 78, 1227–1233.CrossRefGoogle Scholar
  15. Levy, M., Correa-Victoria, F. J., Zeigler, R. S., Hu, S., & Hamer, J. E. (1993). Genetic diversity of the rice blast fungus in a disease nursery in Colombia. Phytopathology, 83, 1427–1433.CrossRefGoogle Scholar
  16. Long, D., Correll, J., Lee, F., & TeBeest, D. (2001). Rice blast epidemics initiated by infested rice grain on the soil surface. Plant Disease, 85, 612–616.CrossRefGoogle Scholar
  17. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential and durable resistance. Annual Review of Phytopathology, 40, 349–379.CrossRefGoogle Scholar
  18. Nelson, R. J., Orrego, R., Ortiz, O., Mundt, M., Fredrix, M., & Vien, N. V. (2001). Working with resource-poor farmers to manage plant diseases. Plant Disease, 85, 684–695.CrossRefGoogle Scholar
  19. Notteghem, J. L., & Silué, D. (1992). Distribution of mating type alleles in Magnaporthe grisea populations pathogenic on rice. Phytopathology, 82, 421–424.CrossRefGoogle Scholar
  20. Park, S. Y., Milgroom, M. G., Han, S. S., Kang, S., & Lee, Y. H. (2003). Diversity of pathotypes and DNA fingerprint haplotypes in populations of Magnaporthe grisea in Korea over two decades. Phytopathology, 93, 1378–1385.CrossRefGoogle Scholar
  21. Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., Han, B., & Wang, G. L. (2006). The broad-spectrum blast resistance genePi9 encodes a nucleotide-binding site- leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 172, 1901–1914.CrossRefGoogle Scholar
  22. Saleh, D., Milazzo, J., Adreit, H., Fournier, E., & Tharreau, D. (2014). South-East Asia is the center of origin, diversity and dispersion of the rice blast fungus, Magnaporthe oryzae. New Phytologist, 201, 1440–1456.CrossRefGoogle Scholar
  23. Silué, D., Notteghem, J. L., & Tharreau, D. (1992). Evidence of a gene-for-gene relationship in the Oryza sativa - Magnaporthe grisea pathosystem. Phytopathology, 82, 577–580.CrossRefGoogle Scholar
  24. Tharreau, D., Fudal, I., Andriantsimialona, D., Santoso, Utami, D., Fournier, E,, Lebrun, M.-H., & Nottéghem, J.L. (2009) World population structure and migration of the Rice blast fungus, Magnaporthe oryzae. In: Wang GL and B Valent (eds). Advances in genetics, genomics and control of Rice blast disease. p. 209–215.Google Scholar
  25. Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C., Song, M. Y., Cumagun, C. J. R., Deng, Q., Lu, G., Jeon, J. S., Naqvi, N., & Zhou, B. (2015). Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist, 206, 1463–1475.CrossRefGoogle Scholar
  26. Xia, J. Q., Correll, J., Lee, F. N., & Ross, W. J. (2000). Regional population diversity of Pyricularia grisea in Arkansas and the influence of host selection. Plant Disease 84, 877–884.Google Scholar
  27. Xu, J. R., & Hamer, J. E. (1995). Assessment of Magnaporthe grisea mating type by spore PCR. Fungal Genetics Newsletter, 42, 80–81.CrossRefGoogle Scholar
  28. Zeigler, R. S. (1998). Recombination in Magnaporthe grisea. Annual Review of Phytopathology, 36, 249–276.CrossRefGoogle Scholar
  29. Zeigler, R. S., Tohme, J., Nelson, R. J., Levy, M., & Correa-Victoria, F. J. (1994). Lineage exclusion: A proposal for linking blast population analysis to resistance breeding. In R. S. Zeigler, S. A. Leong, & P. S. Teng (Eds.), Rice blast disease (pp. 267–292). Cambridge: CAB International.Google Scholar
  30. Zeigler, R. S., Cuoc, L. X., Scott, R. P., Bernardo, M. A., Chen, D., Valent, B., & Nelson, R. J. (1995). The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology, 85, 443–451.CrossRefGoogle Scholar
  31. Zeng, J. S., Feng Cai, J., Wang, L., Lin, F., & Pan, Q. (2009). Distribution of mating type and sexual status in Chinese rice blast populations. Plant Disease, 93, 238–242.CrossRefGoogle Scholar
  32. Zhou, E., Jia, Y., Singh, P., Correll, J. C., & Lee, F. N. (2007). Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genetics and Biology, 44, 1024–1034.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Ana Liza C. Lopez
    • 1
    • 2
  • Christian Joseph R. Cumagun
    • 1
    Email author
  1. 1.Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food ScienceUniversity of the Philippines Los Baños (UPLB)Los BañosPhilippines
  2. 2.Jose Rizal Memorial State UniversityDapitan CityPhilippines

Personalised recommendations