Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 1, pp 89–100 | Cite as

Bayesian analyses of five gene regions reveal a new phylogenetic species of Macrophomina associated with charcoal rot on oilseed crops in Brazil

  • Alexandre Reis Machado
  • Danilo Batista Pinho
  • Dartanhã José Soares
  • André Angelo Medeiros Gomes
  • Olinto Liparini PereiraEmail author
Article

Abstract

Macrophomina is a genus belonging to Botryosphaeriaceae that comprises well-known necrotrophic pathogens related to hundreds of plant hosts around the world. Historically, M. phaseolina is the causal agent of charcoal rot in several crops, mainly in tropical and subtropical areas around the world. However, after a recent genetic diversity study using morphological and molecular approaches, which resulted in the epitypification of M. phaseolina, and the description of a new Macrophomina species associated with charcoal rot disease, the hypothesis that other cryptic species could be present under the name M. phaseolina was raised. Previous studies in Brazil revealed a high genetic diversity and different levels of aggressiveness of M. phaseolina isolates associated with charcoal rot in oilseed crops. Thus, the aim of the present study was, through phylogenetic and morphological studies, to determine if isolates of Macrophomina obtained from different oilseed crops represent a single species or distinct taxa. Based on the results obtained, it was possible to identify three different Macrophomina species: M. phaseolina, M. pseudophaseolina and a new phylogenetic species, M. euphorbiicola. This is first report of M. pseudophaseolina in Brazil causing charcoal rot on Arachis hypogaea, Gossypium hirsutum and Ricinus communis and associated with seed decay of Jatropha curcas. In addition, a novel species described in the present study, M. euphorbiicola, is reported as the etiological agent of the charcoal rot on R. communis and Jatropha gossypifolia.

Keywords

Botryosphaeriales Cryptic species Phylogeny Plant pathology Soil-borne fungi 

Notes

Acknowledgements

We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES and Fundação de Amparo a Pesquisa do Estado de Minas Gerais –FAPEMIG (APQ-00387-16) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest and that the manuscript complies with the ethical standards of the journal.

References

  1. Almeida, A. M. R., Abdelnoor, R. V., Arias, C. A. A., Carvalho, V. P., Jacoud Filho, D. S., et al. (2003). Genotypic diversity among Brazilian isolates of Macrophomina phaseolina revealed by RAPD. Fitopatologia Brasileira, 28, 279–285.CrossRefGoogle Scholar
  2. Almeida, A. M. R., Sosa-Gomez, D. R., Binneck, E., Marin, S. R. R., Zucchi, M. I., et al. (2008). Effect of crop rotation on specialization and genetic diversity of Macrophomina phaseolina. Tropical Plant Pathology, 33, 257–264.CrossRefGoogle Scholar
  3. Baird, R. E., Wadl, P. A., Allen, T., McNeill, D., Wang, X., et al. (2010). Variability of United States isolates of Macrophomina phaseolina based on simple sequence repeats and cross genus transferability to related genera within Botryosphaeriaceae. Mycopathologia, 170, 169–180.CrossRefGoogle Scholar
  4. Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.CrossRefGoogle Scholar
  5. Claudino, M. R., & Soares, D. J. (2014). Pathogenicity and aggressiveness of Macrophomina phaseolina isolates to castor (Ricinus communis). Tropical Plant Pathology, 39, 453–456.CrossRefGoogle Scholar
  6. Crous, P. W., Slippers, B., Wingfield, M. J., Rheeder, J., Marasas, W. F. O., et al. (2006). Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology, 55, 235–−253.CrossRefGoogle Scholar
  7. Dhingra, O. D., & Sinclair, J. B. (1978). Biology and pathology of Macrophomina phaseolina. Viçosa: Imprensa Universitária, Universidade Federal de Viçosa 166 p.Google Scholar
  8. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefGoogle Scholar
  9. Farr, D. F., & Rossman, A. Y. (2018). Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/.
  10. Gupta, G. K., Sharma, S. K., & Ramteke, R. (2012). Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). Journal of Phytopathology, 160, 167–180.CrossRefGoogle Scholar
  11. Hall, T. (2012). BioEdit v7.0.9: Biological sequence alignment editor for Win95/98/2K/XP/7. http://www.mbio.ncsu.edu/bioedit/bioedit.html .
  12. Hyde, K. D., Nilsson, R. H., Alias, S. A., Ariyawansa, H. A., Blair, J. E., et al. (2014). One stop shop: Backbones trees for important phytopathogenic genera: I (2014). Fungal Diversity, 67, 21–125.CrossRefGoogle Scholar
  13. Jacobs, K., Bergdahl, D. R., Wingfield, M. J., Halik, S., Seifert, K. A., et al. (2004). Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycological Research, 108, 411–418.CrossRefGoogle Scholar
  14. Jana, T., Sharma, T. R., Prasad, R. D., & Arora, D. K. (2003). Molecular characterization of Macrophomina phaseolina and Fusarium species by a single primer RAPD technique. Microbiological Research, 158, 249–257.CrossRefGoogle Scholar
  15. Kumar, S., Stecher, G., & Tamura, K. (2015). MEGA7: Molecular evolutionary genetics analysis version 7.0. Molecular Biology and Evolution (submitted). http://www.megasoftware.net/. Accessed 9 Sept 2017.
  16. Mayek-Perez, N., Lopez-Castañeda, C., Gonzalez-Chavira, M., Garcia-Espinosa, R., Acosta-Gallegos, J., et al. (2001). Variability of Mexican isolates of Macrophomina phaseolina based on pathogenesis and AFLP genotype. Physiological and Molecular Plant Pathology, 59, 257–264.CrossRefGoogle Scholar
  17. Mihail, J. D., & Taylor, S. J. (1995). Interpreting variability among isolates of Macrophomina phaseolina in pathogenicity, pycnidium production, and chlorate utilization. Canadian Journal of Botany, 73, 1596–1603.CrossRefGoogle Scholar
  18. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE): 1–8. New Orleans.Google Scholar
  19. O’Donnell, K., & Cigelnik, E. (1997). Two divergent Intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.CrossRefGoogle Scholar
  20. Pearson, C. A. S., Leslie, J. F., & Schwenk, F. W. (1987). Host preference correlated with chlorate resistance in Macrophomina phaseolina. Plant Disease, 71, 828–831.CrossRefGoogle Scholar
  21. Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M. J., et al. (2013). The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology, 76, 51–167.CrossRefGoogle Scholar
  22. Pinho, D. B., Firmino, A. L., Ferreira-Junior, W. G., & Pereira, O. L. (2012). An efficient protocol for DNA extraction from Meliolales and the description of Meliola centellae sp. nov. Mycotaxon, 122, 333–345.CrossRefGoogle Scholar
  23. Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793–808.CrossRefGoogle Scholar
  24. Rambaut, A. (2009). FigTree 1.2.2. http://tree.bio.ed.ac.uk/software/figtree/.
  25. Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 43, 304–311.CrossRefGoogle Scholar
  26. Rayatpanah, S., Nanagulyan, S. G., Alav, S. V., Razavi, M., & Ghanbari-Malidarreh, A. (2012). Pathogenic and genetic diversity among Iranian isolates of Macrophomina phaseolina. Chilean Journal of Agricultural Research, 72, 40–44.CrossRefGoogle Scholar
  27. Reichert, I., & Hellinger, E. (1947). On the occurrence, morphology, and parasitism of Sclerotium bataticola. Palestine Journal of Botany, 6, 107–147.Google Scholar
  28. Ronquist, F., & Heulsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.CrossRefGoogle Scholar
  29. Saleh, A. A., Ahmed, H. U., Todd, T. C., Travers, S. E., Zeller, K. A., et al. (2010). Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum. Molecular Ecology, 19, 79–91.CrossRefGoogle Scholar
  30. Sarr, M. P., Diaye, M. N., Groenewald, J. Z., & Crous, P. (2014). Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathologia Mediterranea, 53, 250–268.Google Scholar
  31. Short, G. E., Wyllie, T. D., & Bristow, P. R. (1980). Survival of Macrophomina phaseolina in soil in residue of soybean. Phytopathology, 70, 13–17.CrossRefGoogle Scholar
  32. Singh, T., & Singh, D. (1982). Transmission of seed-borne inoculum of Macrophomina phaseolina from seed to plant. Proceedings of the Indiana Academy of Sciences, 91, 357–370.CrossRefGoogle Scholar
  33. Songa, W., & Hillocks, R. J. (1998). Survival of Macrophomina phaseolina in bean seed and crop residue. International Journal of Pest Management, 44, 109–114.CrossRefGoogle Scholar
  34. Sutton, B. C. (1980). The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Kew, Surrey: Commonwealth Mycological Institute.Google Scholar
  35. Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology, 31, 21–32.CrossRefGoogle Scholar
  36. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplifcation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic Press.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Alexandre Reis Machado
    • 1
  • Danilo Batista Pinho
    • 2
  • Dartanhã José Soares
    • 3
  • André Angelo Medeiros Gomes
    • 4
  • Olinto Liparini Pereira
    • 5
    Email author
  1. 1.Departamento de MicologiaUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Departamento de FitopatologiaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Empresa Brasileira de Pesquisa Agropecuária, Embrapa AlgodãoCampina GrandeBrazil
  4. 4.Departamento de Microbiologia AgrícolaUniversidade Federal de ViçosaViçosaBrazil
  5. 5.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations