European Journal of Plant Pathology

, Volume 153, Issue 1, pp 79–88 | Cite as

Fractions of the Lippia origanoides extract induce the polyphenol oxidase and phenylalanine ammonia lyase enzymes in Solanum lycopersicum

  • Paulo Nogueira de Barros
  • Dannielle de Lima Costa
  • Antônio Euzébio Goulart Santana
  • Gildemberg Amorim LealJrEmail author


The resistance of the pathogenic fungi to fungicides and the perspective of induced resistance to plants guides the search for molecules to promote the sustainable control of agricultural crop diseases. The exhaustion of conventional sources gives a direction for the search of exotic plants from arid environments or with medicinal properties. This study aims to evaluate the antifungal activity of the Anadenanthera colubrina, Lippia origanoides, Mimosa tenuiflora and Myracrodruon urundeuva species and subsequently the specie with the best antifungal activity was used to evaluate the potential in inducing the enzyme activity. The antifungal effect was determined with 10 fungi using the crude ethanol extract at 100 and 1000 μg mL- 1 concentrations. The L. origanoides extract was the most effective and inhibited 100% of the pathogens. The L. origanoides extract was fractioned with hexane, chloroform, ethyl acetate and methanol. The hexane fraction inhibited 100% of the growth of pathogens at 400 μg mL−1. The in vitro evaluation of the ability to induce enzymes in Solanum lycopersicum (Micro-Tom cultivar) was determined with the increase of oxidative enzymes, polyphenol oxidase and phenylalanine ammonia lyase activity. The ability to induce enzymes was determined with 400 μg mL−1 of the crude extract and L. origanoides fractions. The crude extract did not induce the enzyme activity and the fractions induced the polyphenol oxidase and phenylalanine ammonia lyase enzymes. The results confirmed the broad spectrum antifungal activity of the L. origanoides crude extracts. The partition revealed fractions with different capacities to induce enzymes associated to the resistance that was not revealed by the crude extract.


Pathogenic Fungi Induced resistance Defense enzymes Solanum lycopersicum Micro-Tom 



The authors acknowledge the Coordination for High Level Personal Improvement (CAPES in Portuguese) for its financial support. Paulo Nogueira de Barros received a fellowship from CAPES.

Compliance with ethical standards

This research article is not submitted elsewhere for publication and this manuscript complies with the Ethical Rules applicable for this journal.

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Albuquerque, U. P. D., Andrade, L. D. H. C., & Silva, A. C. O. D. (2005). Use of plant resources in a seasonal dry forest (Northeastern Brazil). Acta Botânica Brasílica, 19(1), 27–38.Google Scholar
  2. Bezerra, D. A. C., Rodrigues, F. F. G., da Costa, J. G. M., Pereira, A. V., de Sousa, E. O., & Rodrigues, O. G. (2011). Abordagem fitoquímica, composição bromatológica e atividade antibacteriana de Mimosa tenuiflora (Wild) Poiret e Piptadenia stipulacea (Benth) Ducke. Acta Scientiarum. Biological Sciences, 33(1), 99–106.Google Scholar
  3. Bittara, F., Rodríguez, D., Sanabria, M., Monroy, J., & Rodríguez, J. L. (2009). Evaluación de fungicidas y productos vegetales en el combate de la sarna polvorienta de la papa. Interciencia, 34(4), 265–269.Google Scholar
  4. Borges, I. V., Peixoto, A. R., Cavalcanti, L. S., Lima, M. A. G., & Silva, M. (2013). Extratos de jurema preta no controle de mancha-de-alternaria em melancia. Revista Caatinga, 26(3), 36–45.Google Scholar
  5. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.Google Scholar
  6. Campos, V. A., Perina, F. J., Alves, E., Sartorelli, J., Moura, A. M., & Oliveira, D. F. (2014). Anadenanthera colubrina (Vell.) Brenan produces steroidal substances that are active against Alternaria alternata (Fr.) Keissler and that may bind to oxysterol-binding proteins. Pest Management Science, 70(12), 1815–1822.Google Scholar
  7. Cartaxo, S. L., de Almeida Souza, M. M., & de Albuquerque, U. P. (2010). Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. Journal of Ethnopharmacology, 131(2), 326–342.Google Scholar
  8. Carvalho, D. D. C., Alves, E., Camargos, R. B., Oliveira, D. F., Scolforo, J. R. S., de Carvalho, D. A., & Batista, T. R. S. (2011). Plant extracts to control Alternaria alternata in Murcott tangor fruits. Revista Iberoamericana de Micología, 28(4), 173–178.Google Scholar
  9. Castillo, F., Hernández, D., Gallegos, G., Mendez, M., Rodríguez, R., Reyes, A., & Aguilar, C. N. (2010). In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kühn. Industrial Crops and Products, 32(3), 324–328.Google Scholar
  10. Chakraborty, N., Ghosh, S., Chandra, S., Sengupta, S., & Acharya, K. (2016). Abiotic elicitors mediated elicitation of innate immunity in tomato: an ex vivo comparison. Physiology and Molecular Biology of Plants, 22(3), 307–320.Google Scholar
  11. da Silva, J. A., Pegado, C. M. A., Ribeiro, V. V., de Brito, N. M., & do Nascimento, L. C. (2009). Efeito de extratos vegetais no controle de Fusarium oxysporum f. sp tracheiphilum em sementes de caupi. Ciencia e Agrotecnologia, 33(2), 611–616.Google Scholar
  12. Desmarchelier, C., Romao, R. L., Coussio, J., & Ciccia, G. (1999). Antioxidant and free radical scavenging activities in extracts from medicinal trees used in the ‘Caatinga’ region in northeastern Brazil. Journal of Ethnopharmacology, 67(1), 69–77.Google Scholar
  13. Fry, S. C. (1986). Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annual Review of Plant Physiology, 37(1), 165–186.Google Scholar
  14. Hernández, J. L. V., Rodríguez, D., Sanabria, M. E., & Hernández, J. (2009). Efecto de tres extractos vegetales sobre la Sigatoka negra del plátano (Musa AAB cv. Hartón). Revista Científica UDO Agrícola, 9(1), 182–190.Google Scholar
  15. Hussain, A. I., Anwar, F., Sherazi, S. T. H., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108(3), 986–995.Google Scholar
  16. Intapruk, C., Takano, M., & Shinmyo, A. (1994). Nucleotide sequence of a new cDNA for peroxidase from Arabidopsis thaliana. Plant Physiology, 104(1), 285–286.Google Scholar
  17. Ishige, F., Mori, H., Yamazaki, K. I., & Imaseki, H. (1993). Identification of a basic glycoprotein induced by ethylene in primary leaves of azuki bean as a cationic peroxidase. Plant Physiology, 101(1), 193–199.Google Scholar
  18. Ishii, H. (2006). Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Japan Agricultural Research Quarterly: JARQ, 40(3), 205–211.Google Scholar
  19. Lo, S. C., Weiergang, I., Bonham, C., Hipskind, J., Wood, K., & Nicholson, R. L. (1996). Phytoalexin accumulation in sorghum: Identification of a methyl ether of luteolinidin. Physiological and Molecular Plant Pathology, 49(1), 21–31.Google Scholar
  20. Meissner, R., Yuval, J., Melamed, S., Shai, L., Shalev, G., Ashri, A., Elkind, Y., & Levy, A. (1997). A new model system for tomato genetics. The Plant Journal, 12, 1464–1472.Google Scholar
  21. Moyankova, D., Lyubenova, A., Slavov, S., & Djilianov, D. (2014). Extracts of the endemic resurrection plant Haberlea rhodopensis stimulate in vitro growth of various Phytophthora spp. pathogens. European Journal of Plant Pathology, 138(1), 149–155.Google Scholar
  22. Nisha, S., Revathi, K., Chandrasekaran, R., Kirubakaran, S. A., Sathish-Narayanan, S., Stout, M. J., & Senthil-Nathan, S. (2012). Effect of plant compounds on induced activities of defense-related enzymes and pathogenesis related protein in bacterial blight disease susceptible rice plant. Physiological and Molecular Plant Pathology, 80, 1–9.Google Scholar
  23. Paterson, R. R. M., Meon, S., Abidin, M. A. Z., & Lima, N. (2008). Prospects for inhibition of lignin degrading enzymes to control ganoderma white rot of oil palm. Current Enzyme Inhibition, 4(4), 172–179.Google Scholar
  24. Reddy, M. S. (1991). Biological control of plant diseases. In M. C. AS (Ed.), Biological control of pests in Canada (pp. 33–42). Canada: Alberta.Google Scholar
  25. Resende, M. L. V., Costa, J. D. C. B., Cavalcanti, F. R., Ribeiro Júnior, P. M., & Camilo, F. R. (2007). Seleção de extratos vegetais para indução de resistência e ativação de respostas de defesa em cacaueiro contra a vassoura-de-bruxa. Fitopatologia Brasileira, 32(3), 213–221.Google Scholar
  26. Rodríguez, D., & Sanabria, M. E. (2005). Efecto del extracto de tres plantas silvestres sobre la Rizoctoniosis: la mancha sureña del maíz y los patógenos que las causan. Interciencia: Revista de Ciencia y Tecnología de América, 30(12), 739–744.Google Scholar
  27. Rodríguez, D. J., García, R. R., Castillo, F. H., González, C. A., Galindo, A. S., Quintanilla, J. V., & Zuccolotto, L. M. (2011). In vitro antifungal activity of extracts of Mexican Chihuahuan Desert plants against postharvest fruit fungi. Industrial Crops and Products, 34(1), 960–966.Google Scholar
  28. Schneider, S., & Ullrich, W. R. (1994). Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers. Physiological and Molecular Plant Pathology, 45(4), 291–304.Google Scholar
  29. Silva, F. de A. S. e. and Azevedo, C. A. V. de. (2006). A New Version of the Assistat-Statistical Assistance Software. In: World Congress on Computers in Agriculture, 4, Orlando-FL-USA: Anais. Orlando: American Society of Agricultural and Biological Engineers, p. 393–396.Google Scholar
  30. Silva, P. S., Viccini, L. F., Singulani, J. L., Siqueira, E. P. D., Zani, C. L., & Alves, T. (2010). Chemical composition of the essential oil and hexanic fraction of Lippia and Lantana species. Revista Brasileira de Farmacognosia, Brazilian Journal of Pharmacognosy, 20(6), 843–849 Dez.Google Scholar
  31. Singh, D. (1994). Scope of medicinal and aromatic plants in pest management. In International symposium, allelopathy in sustainable agriculture, forestry and environment, New Delhi (Vol. 68).Google Scholar
  32. Stashenko, E. E., Martínez, J. R., Ruíz, C. A., Arias, G., Durán, C., Salgar, W., & Cala, M. (2010). Lippia origanoides chemotype differentiation based on essential oil GC-MS and principal component analysis. Journal of Separation Science, 33(1), 93–103.Google Scholar
  33. Vega-Vela, N. E., & Sánchez, M. I. C. (2012). Genetic structure along an altitudinal gradient in Lippia origanoides, a promising aromatic plant species restricted to semiarid areas in northern South America. Ecology and Evolution, 2(11), 2669–2681.Google Scholar
  34. Viana, G. S. B., Bandeira, M. A. M., & Matos, F. J. A. (2003). Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva Allemão. Phytomedicine, 10(2), 189–195.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Paulo Nogueira de Barros
    • 1
  • Dannielle de Lima Costa
    • 2
  • Antônio Euzébio Goulart Santana
    • 2
  • Gildemberg Amorim LealJr
    • 1
    Email author
  1. 1.Center of Agrarian SciencesFederal University of AlagoasRio LargoBrazil
  2. 2.Chemistry DepartmentFederal University of AlagoasRio LargoBrazil

Personalised recommendations