Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 1, pp 65–78 | Cite as

Relationship study among soils physico-chemical properties and Monosporascus cannonballus ascospores densities for cucurbit fields in Tunisia

  • Abdelhak Rhouma
  • Ibtissem Ben Salem
  • Mahmoud M’hamdi
  • Naima Boughalleb-M’HamdiEmail author
Article
  • 96 Downloads

Abstract

Monosporascus cannonballus is a prominent soil-borne pathogen in the principal Tunisian cucurbits growing areas. One experimental field, was chosen for this study at three growing seasons (A: 2009/10; B: 2010/11 and C: 2013/14), located in the High Institute of Agronomy Chott Meriem (Sousse, Tunisia). The aim of this investigation was to assess the relationship between physicochemical soils properties and spatial distribution of M. cannonballus ascospores densities. The results revealed that ascospores were recovered from all soil subplots at different depths. The highest ascospores density was recorded at 10–20 cm (2.24 ascospores/g soil). At the horizontal distribution, the first (A) and third (C) growing seasons have registered an ascospores level increase with values of 2.13 and 2.17, respectively. Only the first growing season had shown a uniform horizontal distribution. Obtained results revealed an augmentation of the ascospores number at the growing season C with a dissimilar distribution. In general, ascospores densities differed according to the experiments but values were clustered to 1.1–2 ascospores/g of soil which could be favorable for the disease. The physicochemical soils properties analysis at 10–20 cm depth, showed that the soils present a low level of organic carbon and matter, with a pH of 7.78. The soils were mainly sandy, with highly electrical conductivity (2.57 ds m−1), a C/N ratio of 8.11% and silt percent of 4.33%. The principle component analysis (PCA) for the fourteen quantitative traits indicated that the first two PCs explained 57.28%. Four factors exhibited a significant positive correlation with ascospore density; organic matter (r = 0.77), organic carbon (r = 0.74), the mass of nitrogen (r = 0.7) and electrical conductivity (r = 0.61). To control Monosporascus cannonballus in field within IPM strategies, soils physico-chemical properties should be taken in consideration.

Keywords

Ascospores Physicochemical properties Soil Spatial distribution 

Notes

Acknowledgements

This study was financed by UR13AGR03, University of Sousse, Tunisia. We ared grateful to Pr. Josep Armengol, Instituto Agroforestal Mediterráneo (IAM); Universitat Politècnica de València (UPV), Spain for reviewing the paper.

Funding

This research was supported by UR13AGR03, University of Sousse, Tunisia. The experiments comply with the current laws of the country in which they were performed.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Aegerter, B. J., Gordon, T. R., & Davis, R. M. (2000). Occurrence and pathogenicity of fungi associated with melon root rot and vine decline in California. Plant Disease, 84, 224–230.CrossRefGoogle Scholar
  2. Aleandri, M. P., Martignoni, D., Reda, R., Alfaro-Fernández, A., Font, M. I., Armengol, J., & Chilosi, G. (2017). Involvement of Olpidium bornovanus and O. Virulentus in the occurrence of melon root rot and vine decline caused by Monosporascus cannonballus in Central Italy. Journal of Plant Pathology, 99, 169–176.Google Scholar
  3. Beltrán, R., Vicent, A., Sales Jr., R., García-Jiménez, J., & Armengol, J. (2005). Population dynamics of Monosporascus cannonballus ascospores in marsh soils in eastern Spain. European Journal of Plant Pathology, 113, 357–365.CrossRefGoogle Scholar
  4. Beltrán, R., Vicent, A., Garcıa-Jimenez, J., & Armengol, J. (2007). Quantification of Monosporascus cannonballus ascospores in muskmelon fields in eastern Spain. Journal of Phytopathology, 155, 248–250.CrossRefGoogle Scholar
  5. Beltrán, R., Vicent, A., García-Jimenez, J., & Armengol, J. (2008). Comparative epidemiology of Monosporascus root rots and vine decline in muskmelon and grafted watermelon crops. Plant Disease, 92, 158–162.CrossRefGoogle Scholar
  6. Ben Salem, I., Boughalleb-M’Hamdi, N., Souli, M., & Cherif, M. (2011). Morphological and biological characterization of Monosporascus cannonballus isolates, responsible of watermelon decline in Kairouan's area. Research in Plant Biology, 1(3), 28–37.Google Scholar
  7. Ben Salem, I., Correia, K. C., Boughalleb, N., Michereff, S. J., León, M., Abad-Campos, P., García-Jiménez, J., & Armengol, J. (2013). Monosporascus eutypoides as another cause of Monosporascus root rot and vine decline in Tunisia, and evidence that M. cannonballus and M. eutypoides are distinct species. Plant Disease, 97, 737–743.CrossRefGoogle Scholar
  8. Ben Salem, I., Armengol, J., M’hamdi, M., & Boughalleb-M’hamdi, N. (2015). Effects of crop sequences on soil population dynamics of Monosporascus cannonballus ascospores and Monosporascus root rot and vine decline incidence. International Journal of Current Microbiology and Applied Sciences, 4(9), 482–500.Google Scholar
  9. Boughalleb, N., & El Mahjoub, M. (2006). Watermelon sudden decay in Tunisia: Identification of pathogenic fungi and determination of primary agents. Pakistan Journal of Biological Sciences, 9(6), 1095–1103.CrossRefGoogle Scholar
  10. Boughalleb, N., Ben Salem, I., Beltran, R., Vicent, A., Perez-Sierra, A., Abad-Campos, P., Garcıa-Jimenez, J., & Armengol, J. (2010). Occurrence of Monosporascus cannonballus in watermelon fields in Tunisia and factors associated with Ascospore density in soil. Journal of Phytopathology, 158, 137–142.CrossRefGoogle Scholar
  11. Bray, H. R., & Kurtz, L. T. (1945). Determination of total organic and available forms of phosphorus in soil. Soil Science, 59, 39–45.CrossRefGoogle Scholar
  12. Bremner, J. M. (1996). Nitrogen total. In: D. L. Sparks (Ed.), Methods of soil analysis, chemical methods (Part 3) (pp. 1085–1121). Madison: Soil Science Society of America Book Series Number 5, American Society of Agronomy, Madison, Wisconsin.Google Scholar
  13. Cara, M., López, V., Córdoba, M. C., Santos, M., Jordá, C., & Tello, J. C. (2008). Association of Olpidium bornovanus and Melon necrotic spot virus with vine decline of melon in Guatemala. Plant Disease, 92, 709–713.CrossRefGoogle Scholar
  14. Cohen, R., Pivonia, S., Crosby, K. M., & Martyn, R. D. (2012). Advances in the biology and management of Monosporascus vine decline and wilt of melons and other cucurbits. Horticultural Reviews, 39, 77–120.Google Scholar
  15. Dong, A. R., Lv, G. Z., Wu, Q. Y., Song, R. Q., & Song, F. Q. (2004). Diversity of soil fungi in Liangshui natural reserve, Xiaoxing’anling forest region. Journal of Northeast Forestry University, 32(1), 8–10.Google Scholar
  16. Ferrin, D. M., & Stanghellini, M. E. (2006). Effect of water potential on mycelial growth and perithecial production of Monosporascus cannonballus in vitro. Plant Pathology, 55, 421–426.CrossRefGoogle Scholar
  17. Heo, N. Y., Ryu, K. Y., & Lee, Y. B. (2001a). Cultural characteristics and ascospore density in soil of Monosporascus cannonballus on Cucurbitaceae plants. Research in Plant Disease, 7, 16–19.Google Scholar
  18. Heo, N. Y., Ryu, K. Y., Hyn, I. H., & Kwon, J. H. (2001b). Occurrence and distribution of Monosporascus root rot and pathogenicity of Monosporascus cannonballus on Cucurbitaceae plants. Research in Plant Disease, 7(1), 11–15.Google Scholar
  19. Jackson, M. L. (1979). Soil chemical analyses: Advanced courses. USA: University of Wisconsin Madison.Google Scholar
  20. Ju, T. Z., Chen, Y., Chang, C. H., & An, L. Z. (2008). The diversity of soil fungi and its relations with fertility factors in taxuschinensis (Pilg.) rehd community of Xiaolongshan of Tianshui City. Research of Environmental Sciences, 21(1), 128–132.Google Scholar
  21. Kjeldahl, J. (1883). Neue Methodezur Bestimmung des Stickstoffs in organischen Körpern. Analytical Chemistry, 22, 366–382.CrossRefGoogle Scholar
  22. Koike, S. T., Subbarao, K. V., Davis, R. M., & Turini, T. A. (2003). Vegetable Diseases Caused by Soil borne Pathogens: ANR publication 8099. Retrieved from University of California USA, Agriculture and Natural Resources website: http://ucanr.edu/repository/fileaccess.cfm?article=54016&p=%20VEHRCE.
  23. Kwon, M. K., Jeong-Rae, H., Yong-Hwan, K., & Ki-Chung, K. (2001). Soil-environmental factors involved in the development of root rot/vine on cucurbits caused by Monosporascus cannonballus. Plant Pathology Journal, 17(1), 45–51.Google Scholar
  24. Lobo-Ruano, M. (1991). Severe diseases of melons and watermelons. Boletin de Sanidad Vegetal - Plagas, 17(1), 133–163.Google Scholar
  25. Makam, S. N., Peer, W. A., Blakeslee, J. J., & Murphy, A. S. (2005). Cultural conditions contributing to vine decline syndrome in watermelon. Hortscience, 40(3), 597–601.CrossRefGoogle Scholar
  26. Marschner, P., Kandeler, E., & Marschner, B. (2003). Structure and function of the soil microbial community in a long- term fertilizer experiment. Soil Biology and Biochemistry, 35, 453–461.CrossRefGoogle Scholar
  27. Martyn, R. D., & Miller, M. E. (1996). Monosporascus root rot and vine decline, an emerging disease of melons worldwide. Plant Disease, 80, 716–725.CrossRefGoogle Scholar
  28. Martyn, R. D., Lovic, B. R., Maddox, D. A., Germash, A., & Miller, M. E. (1994). First report of Monosporascus root rot/vine decline of watermelon in Tunisia. Plant Disease, 78, 1220.CrossRefGoogle Scholar
  29. Mathieu, C., & Pieltain, F. (2003). Analyse chimique des sols. Paris: Tec et Doc Lavoisier.Google Scholar
  30. Medeiros, E. V., da Silva, P., Katchen, J., Oliveira, L. A., Ferreira, H. A., & Sales Jr., R. (2008a). Monosporascus cannonballus density in soils cultivated with different crops in Rio Grande do Norte State. Brazil Revista Brasileira de Ciências Agrárias, 3, 1–5.CrossRefGoogle Scholar
  31. Medeiros, E. V., da Silva, S. E. C., Granjeiro, L. C., Sobrinho, J. E., de Negreiros, M. Z., & Sales Jr., R. (2008b). Influence of the row cover on the population density of Monosporascus cannonballus in soil cultivated with watermelon (Citrullus lanatus). Ciência e Agrotecnologia, Lavras, 32, 797–803.CrossRefGoogle Scholar
  32. Mertely, J. C., Martyn, R. D., Miller, M. E., & Bruton, B. D. (1991). Role of Monosporascus cannonballus and other fungi in a root rot/vine decline disease of muskmelon. Plant Disease, 75, 1133–1137.CrossRefGoogle Scholar
  33. Mertely, J. C., Martyn, R. D., Miller, M. E., & Bruton, B. D. (1993). Quantification of Monosporascus cannonballus ascospores in three commercial muskmelon fields in South Texas. Plant Disease, 77, 766–771.CrossRefGoogle Scholar
  34. Murphy, A., & Taiz, L. (1999). Localization and characterization of soluble and plasma membrane amino-peptidase activities in Arabidopsis thaliana seedlings. Plant Physiology and Biochemistry, 37, 431–443.CrossRefGoogle Scholar
  35. Olsen, S. R., Cole, C. V., & Watanabe, F. S. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Colorado Agricultural Experiment Station Scientific Journal Series, 939, 1–19.Google Scholar
  36. Park, K. S., Nam, S. H., & Kim, C. H. (1994). Root rot of bottle gourd stock of watermelon caused by Monosporascus cannonballus in Korea. Korean Journal of Plant Pathology, 10, 175–180.Google Scholar
  37. Petard, J. (1993). Les méthodes d'analyse: Analyses de sols (Tome 1). France: Institut Français de Recherche Scientifique pour le Développement - Nouméa, ORSTOM. Lab. Commun. Anal.Google Scholar
  38. Pivonia, S., Cohen, R., Kigel, J., & Katan, J. (2002). Effect of soil temperature on disease development in melon plants infected by Monosporascus cannonballus. Plant Pathology, 51, 472–479.CrossRefGoogle Scholar
  39. Pivonia, S., Cohen, R., Cohen, S., Kigel, J., Levita, R., & Katan, J. (2004). Effect of irrigation regimes on disease expression in melon plants infected with Monosporascus cannonballus. Eurropean Journal of Plant Pathology, 110, 155–161.CrossRefGoogle Scholar
  40. Pollack, F. G., & Uecker, F. A. (1974). Monosporascus cannonballus an unusual Ascomycete in cantaloupe roots. Mycologia, 66, 346–349.CrossRefGoogle Scholar
  41. Radewald, K. C., Ferrin, D. M., & Stanghellini, M. E. (2004). Sanitation practices that inhibit reproduction of Monosporascus cannonballus in melon roots left in the field after crop termination. Plant Pathology, 53, 660–668.CrossRefGoogle Scholar
  42. Saksena, S. B. (1955). Ecological factor governing the distribution of soil micro-fungi. Journal of Indian Botanical Society, 34(3), 262–298.Google Scholar
  43. Song, F. Q., Tian, X. J., Li, Z. Q., Yang, C. L., Chen, B., Hao, J. J., & Zhu, J. (2004). Diversity of filamentous fungi in organic layers of two forests in Zijin Mountain. Journal of Forestry Research, 15(4), 273–279.CrossRefGoogle Scholar
  44. Stanghellini, M. E., & Misaghi, I. J. (2011). Olpidium bornovanus mediated germination of ascospores of Monosporascus cannonballus: A host-specific rhizosphere interaction. Phytopathology, 101, 794–796.CrossRefGoogle Scholar
  45. Stanghellini, M. E., & Rasmussen, S. L. (1992). A quantitative method for the recovery of ascospores of Monosporascus cannonballus from field soil. Phytopathology, 82, 1115. (Abstract).Google Scholar
  46. Stanghellini, M. E., Kim, D. H., & Rasmussen, S. L. (1996). Ascospores of Monosporascus cannonballus: germination and distribution in cultivated and desert soils in Arizona. Phytopathology, 86, 509–514.CrossRefGoogle Scholar
  47. Stanghellini, M. E., Kim, D. H., & Waugh, M. (2000). Microbe-mediated germination of ascospores of Monosporascus cannonballus. Phytopathology, 90, 243–247.CrossRefGoogle Scholar
  48. Stanghellini, M. E., Kim, D. H., Waugh, M. M., Ferrin, D. M., Alcantara, T., & Rasmussen, S. L. (2004a). Infection and colonization of melon roots by Monosporascus cannonballus in two cropping seasons in Arizona and California. Plant Pathology, 53, 54–57.CrossRefGoogle Scholar
  49. Stanghellini, M. E., Waugh, M. M., Radewald, K. C., Kim, D. H., Ferrin, D. M., & Turini, T. (2004b). Crop residue destruction strategies that enhance rather than inhibit reproduction of Monosporascus cannonballus. Plant Pathology, 53, 50–53.CrossRefGoogle Scholar
  50. Stanghellini, M. E., Mathews, D. M., & Misaghi, I. J. (2010). Pathogenicity and management of Olpidium bornovanus, a root pathogen of melons. Plant Disease, 94, 163–166.CrossRefGoogle Scholar
  51. Stanghellini, M. E., Mohammadi, M., & Adaskaveg, J. E. (2014). Effect of soil matric water potentials on germination of ascospores of Monosporascus cannonballus and colonization of melon roots by zoospores of Olpidium bornovanus. European Journal of Plant Pathology, 139(2), 393–398.CrossRefGoogle Scholar
  52. Uematsu, S., & Sekiyma, K. (1990). Comparison of morphological characteristics and pathogenicity of Monosporascus cannonballus Pollack and Uecker collected in Japan, distribution in melon plant with root rot symptoms and survival in soils under laboratory conditions. Soil Microorganisms, 35, 7–12.Google Scholar
  53. Van Rast, E., Verloo, M., Demeyer, A., & Pauwels, J. M. (1999). Manual for the soil chemistry and fertility laboratory-analytical methods for soils and plants, equipment, and management of consumables. Ghent Belgium: Academic Bibliography.Google Scholar
  54. Walkley, A., & Black, C. A. (1934). An examination of the Degtjareff method for determining organic carbon in soils. Effect of variations in disgestion conditions and inorganic soil constituents. Soil Science, 63, 261–263.Google Scholar
  55. Waugh, M. M., Kim, D. H., Ferrin, D. M., & Stanghellini, M. E. (2003). Reproductive potential of Monosporascus cannonballus. Plant Disease, 87, 45–50.CrossRefGoogle Scholar
  56. Yu, C., Lv, D. G., Qin, S. J., Du, G. D., & Liu, G. C. (2007). Microbial flora in Cerasus sachalinensis rhizosphere. Journal of Applied Ecology, 18(10), 2277–2281.Google Scholar
  57. Zhang, C. B., Jin, Z. X., & Li, J. M. (2001). Diversity of bacterial physiological groups and microbial flora in the soil of eight forest types of Tiantai Mountain. Zhejiang. Biodiversity Science, 9(4), 382–388.Google Scholar
  58. Zhang, C. H., Wang, Z. M., Ju, W. M., & Ren, C. Y. (2011). Spatial and temporal variability of soil C/N ratio in Songnen Plain maize belt. Huan Jing Ke Xue, 32(5), 1407–1414.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Abdelhak Rhouma
    • 1
  • Ibtissem Ben Salem
    • 1
  • Mahmoud M’hamdi
    • 2
  • Naima Boughalleb-M’Hamdi
    • 1
    Email author
  1. 1.Department of Biological Sciences and Plant Protection, High Institute of Agronomy of Chott MariemUniversity of SousseSousseTunisia
  2. 2.Department of Horticultural Sciences and Vegetable Crops, High Institute of Agronomy of Chott MariemUniversity of SousseSousseTunisia

Personalised recommendations