European Journal of Plant Pathology

, Volume 153, Issue 1, pp 301–310 | Cite as

Molecular characterization of the garlic virus B genome and evidence of allexivirus recombination

  • Marcos G. Celli
  • Maria C. Perotto
  • Cecilia E. Luciani
  • Elizabeth A. Pozzi
  • Vilma C. ConciEmail author


Molecular characterization is important for differentiating allexiviruses species, since detection by serological methods may be uncertain. Eight different species have been reported as infecting garlic: Garlic virus A, B, C, D, E, X (GarV-A, B, C, D, E, X), Shallot virus X (ShVX) and Garlic mite-borne filamentous virus (GarMbFV), and the complete genome is known for six of these. This work reports for the first time the complete sequence of GarV-B and makes a phylogenetic and recombination analysis between the different allexivirus species. Total RNA was obtained of a GarV-B positive garlic plant by ISEM-D using anti-GarV-B antiserum and this was sent for mass sequencing. Deep sequencing revealed the first complete GarV-B genome, consisting of 8327 nucleotides (nt). The genome contained six open reading frames (ORFs) with the typical genome organization which encodes putative proteins of 168 kDa (ORF1), 27 kDa (ORF2), 12 kDa (ORF3), 39 kDa (ORF4), 27 kDa (ORF5) and 14 kDa (ORF6). The comparison of the gene coding for the coat protein of the virus showed a greater identity of nt with other isolates of GarV-B (88.4 to 99.7%) and of GarV-X (75.4 to 78.3%) published in GenBank. The GarV-B replicase gene has not been previously reported in GenBank, so the sequence was compared with GarV-A, -C, −D, −E, −X and ShVX. The highest nt identity values were detected with isolates of GarV-X (73.5 to 74.1%) and GarV-C (71.9 to 72.8%). These results suggest that GarV-X and GarV-B may be different strains of the same virus. A genetic recombination analysis was also performed between the complete sequences of allexiviruses published and obtained in this work and it was detected that the species GarV-D and GarV-E may have arisen from the recombination of the N-terminal portion of GarV-B with the C-terminal portion of GarV-A.


Allium sativum GarV-B NGS Genetic recombination 



This study was carried out at IPAVE-CIAP-INTA and was partially supported by INTA and CONICET.

Compliance with ethical standards

The data acquisition for this work has not been in legal conflict with the authorities where the work was carried out.

Conflicts of interest

The authors have no conflicts of interest to declare.


  1. Adams, M. J., Candresse, T., Hammond, J., Kreuze, J. F., Martelli, G. P., Namba, S., Pearson, M. N., Ryu, K. H., & Vaira, A. M. (2012). Alphaflexiviridae. In A. M. Q. King, M. J. Adams, E. B. Carstens, & E. J. Lefkowitz (Eds.), Virus taxonomy, classification and nomenclature of viruses. Ninth report of the international committee on taxonomy of viruses. Amsterdam: Elsevier Academic Press.Google Scholar
  2. Ahmed, K. M., & Benigno, D. A. (1984). Control of the eriophid mite Aceria tulipae Keifer, the cause of tangle-top malady and the vector of garlic mosaic virus. Indian Journal of Plant Protection, 12, 153–154.Google Scholar
  3. Cafrune, E. E., Giolitti, F., & Conci, V. C. (2005) Purificación de Garlic virus C y producción de antisuero. XII Congreso Latinoamericano de Fitopatología y III Taller de la Asociación Argentina de Fitopatólogos, Carlos Paz, Córdoba, Argentina, 583.Google Scholar
  4. Celli, M. G., Perotto, M. C., Buraschi, D., & Conci, V. C. (2016). Biological and molecular characterization of garlic virus D and its effects on yields of garlic. Acta Horticulturae, 1143, 193–200.CrossRefGoogle Scholar
  5. Chen, J., Chen, J., & Adams, M. J. (2001). Molecular characterisation of a complex mixture of viruses in garlic with mosaic symptoms in China. Archives of Virology, 146, 1841–1853.CrossRefGoogle Scholar
  6. Chen, J., Zheng, H. Y., Antoniw, J. F., Adams, M. J., Chen, J. P., & Lin, L. (2004). Detection and classification of allexiviruses from garlic in China. Archives of Virology, 149, 435–445.CrossRefGoogle Scholar
  7. Conci, V. C., Cafrune, E. E., Perotto, M. C., Torrico, A. K., Celli, M. G. (2013). Virus que infectan el cultivo de ajo. Aspectos epidemiológicos y manejo de la enfermedad. In: 100 temas sobre producción de ajo. V.3. (ed.) Burba JL. EEA-INTA La Consulta, Mendoza, Argentina, pp. 165–187.Google Scholar
  8. Conci, V. C., Helguera, M., & Nome, S. F. (1999). Serological and biological comparison of onion yellow dwarf virus from onion and garlic in Argentina. Fitopatologia Brasileira, 24, 73–75.Google Scholar
  9. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., & Ball, L. A. (2005). Virus Taxonomy. Amsterdam: Elsevier Academic Press.Google Scholar
  10. Helguera, M., Lunello, P. A., Nome, C., & Conci, V. C. (1997a). Advances in the purification of filamentous viruses from garlic and an antisera production. Acta Horticulturae, 433, 623–630.CrossRefGoogle Scholar
  11. Helguera, M., Bravo-Almonacid, F., Kobayashi, K., Rabinowicz, P. D., Conci, V., & Mentaberry, A. (1997b). Immunological detection of a GarV-type virus in argentine garlic cultivars. Plant Disease, 81, 1005–1010.CrossRefGoogle Scholar
  12. Kang, S. G., Koo, B. J., Lee, T., & Chang, M. U. (2007). Allexivirus transmitted by eriophyid mites in garlic plants. Journal of Microbiology and Biotechnology, 17, 1833–1840.Google Scholar
  13. Kanyuka, K. V., Vishnichenko, V. K., Levay, K. E., Kondrikov, D. Y., Ryabov, E. V., & Zavriev, S. K. (1992). Nucleotide sequence of shallot virus X RNA reveals a 5′-proximal cistron closely related to those of potexviruses and a unique arrangement of the 3t-proximal cistrons. The Journal of General Virology, 73, 2553–2560.CrossRefGoogle Scholar
  14. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.CrossRefGoogle Scholar
  15. Lezzhov, A. A., Gushchin, V. A., Lazareva, E. A., Vishnichenko, V. K., Morozov, S. Y., & Solovyev, A. G. (2015). Translation of the shallot virus X TGB3 gene depends on non-AUG initiation and leaky scanning. The Journal of General Virology, 96, 3159–3164.CrossRefGoogle Scholar
  16. Lu, Y. W., Chen, J., Zheng, H. Y., Adams, M. J., & Chen, J. P. (2008). Serological relationships among the over-expressed coat proteins of allexiviruses. Journal of Phytopathology, 156, 251–255.CrossRefGoogle Scholar
  17. Lukhovitskaya, N. I., Vetukuri, R. R., Sama, I., Thaduri, S., Solovyev, A. G., & Savenkov, E. I. (2014). A viral transcription factor exhibits antiviral RNA silencing suppression activity independent of its nuclear localization. The Journal of General Virology, 95, 2831–2837.CrossRefGoogle Scholar
  18. Lunello, P., Ducasse, D., Helguera, M., Nome, S. F., & Conci, V. C. (2002). An Argentinean isolate of leek yellow tripe virus from leek can be transmitted to garlic. Journal of Plant Pathology, 84, 11–17.Google Scholar
  19. Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1, 1–5.CrossRefGoogle Scholar
  20. Milne, R. G., & Luisoni, E. (1977). Rapid immune electron microscopy of virus preparations. In K. Maramorosch & H. Koprowski (Eds.), Methods in virology (pp. 265–281). New York: Academic Press.Google Scholar
  21. Morozov, S. Y., & Solovyev, A. G. (2015). Phylogenetic relationship of some ‘accessory’ helicases of plant positive-stranded RNA viruses: Toward understanding the evolution of triple gene block. Frontiers in Microbiology, 6, 1–8.CrossRefGoogle Scholar
  22. Nagy, P. D. (2008). Recombination in plant RNA viruses. In M. J. Roossinck (Ed.), Plant Virus Evolution (pp. 133–156). Berlin Heidelberg: Academic Press: Springer.CrossRefGoogle Scholar
  23. Perotto, M. C., Cafrune, E. E., & Conci, V. C. (2010). The effect of additional viral infections on garlic plants initially infected with Allexiviruses. European Journal of Plant Pathology, 126, 489–495.CrossRefGoogle Scholar
  24. Song, S. I., Song, J. T., Kim, C. H., Lee, J. S., & Choi, Y. D. (1998). Molecular characterization of the garlic virus X genome. The Journal of General Virology, 79, 155–159.CrossRefGoogle Scholar
  25. Sumi, S. I., Tsuneyoshi, T., & Furutani, H. (1993). Novel rod-shaped viruses isolated from garlic, Allium sativum, possessing a unique genome organization. The Journal of General Virology, 74, 1879–1885.CrossRefGoogle Scholar
  26. Tsuneyoshi, T., Matsumi, T., Deng, T. C., Sako, I., & Sumi, S. (1998). Differentiation of Allium carlaviruses isolated from different partsof the world based on the viral coat protein sequence. Archives of Virology, 143, 1093–1107.CrossRefGoogle Scholar
  27. Van Dijk, P., Verbeek, M., Huijberts, N., Bos, L. (1989). Mite-transmitted viruses in shallot and garlic. Abstract Asilomar Meeting ISHS Working Group on Vegetable viruses, 27–31 August 1989.Google Scholar
  28. Van Dijk, P., Verbeek, M., & Bos, L. (1991). Mite-borne viruses from cultivated Allium species, and their classification into two new rymoviruses in the family Potyviridae. Netherlands Journal of Plant Pathology, 97, 381–399.CrossRefGoogle Scholar
  29. Vishnichenko, V. K., Konareva, T. N., & Zavriev, S. K. (1993). A new filamentous virus in shallot. Plant Pathology, 42, 12–126.CrossRefGoogle Scholar
  30. Wylie, S. J., Li, H., & Jones, M. G. K. (2012). Phylogenetic analysis of allexiviruses identified on garlic from Australia. Australasian Plant Disease Notes, 7, 23–27.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Marcos G. Celli
    • 1
  • Maria C. Perotto
    • 1
    • 2
  • Cecilia E. Luciani
    • 1
  • Elizabeth A. Pozzi
    • 1
  • Vilma C. Conci
    • 1
    • 2
    Email author
  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Instituto de Patología Vegetal (IPAVE) e CIAP e INTACordobaArgentina

Personalised recommendations