Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 1, pp 1–13 | Cite as

Fungal spores affecting vineyards in Montilla-Moriles Southern Spain

  • M. Martínez-BraceroEmail author
  • P. Alcázar
  • M. J. Velasco-Jiménez
  • C. Galán
Article

Abstract

The most common Vitis vinifera diseases are powdery mildew (Uncinula necator), grey mould (Botrytis cinerea) and downy mildew (Plasmopara viticola). Greater knowledge of the factors involved in fungus reproduction and plant infection will help to fine-tune treatment application calendars, thus cutting farmers’ costs and reducing adverse environmental effects. The main aim of this study was to investigate the relationship between airborne spore concentrations, weather-related parameters and grapevine phenology. Phenological observations and airborne spore detection were carried out during the Vitis vinifera growing period (February–August) from 2015 to 2017. Phenological data were collected weekly for four grape varieties (Pedro Ximénez, Verdejo, Muscat à petit grains and Chardonnay). Airborne fungal spores were monitored using one Hirst-type volumetric spore trap, following the standard protocol developed by the Spanish Aerobiology Network (REA) and the European Aeroallergen Society (EAS), and 4 Passive Spore Traps (PST), following the protocol proposed by Kelly et al. (Phytopathology, 105, 905–916, 2015). During this study, U. necator was the most common, followed by B. cinerea and P. viticola. A significant correlation was found between the all PSTs weekly spore concentrations and the Hirst sampler but the seasonal spore integral was always higher for the Hirst-type sampler than for PSTs. Airborne U. necator spore concentrations were higher prior to blooming, and correlated with average temperature and rainfall. B. cinerea recorded the highest concentrations during leaf development, inflorescence emergence and flowering; airborne spore concentrations were correlated with both dew point and daily average temperature. P. viticola presented lower concentration but it was most frequently recorded spore during the stages prior to blooming, and displayed stronger correlations with humidity, dew point and average temperature. Weather conditions over the study period in the Montilla-Moriles Protected Designation of Origin (PDO) area probably gave rise to spore concentrations lower than those reported for vineyards elsewhere in Spain, but higher than those recorded locally in areas where not associated with vineyards. The Hirst-type sampler yielded spore data representative of the whole study area. Knowledge of the factors influencing fungal spore concentration will help to fine-tune treatment calendars, and thus reduce the economic and environmental effects of treatment.

Keywords

Fungal spores Vineyards Montilla-Moriles Mildew Oidium Downy mildew 

Notes

Acknowledgements

This study was supported by the proyect “CGL2014-54731-R- FENOMED-Estudio de tendencias fenológicas en plantas del Mediterráneo Occidental y su relación con el cambio climático”. Ministerio de Economía y Competitividad. Spain Goverment.

Compliance with ethical standards

All authors in this paper have been reported about it and about the send to the present Journal; they also have done their consent.

Conflicts of interest

This study do not have are no conflicts of interest.

References

  1. Álvarez, M., Moreno, I. M., Jos, Á. M., Cameán, A. M., & González, A. G. (2007). Study of mineral profile of Montilla-Moriles “fino” wines using inductively coupled plasma atomic emission spectrometry methods. Journal of Food Composition and Analysis, 20, 391–395.CrossRefGoogle Scholar
  2. Braak, C. J. F. T. (1986). Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology, 67, 1167–1179.  https://doi.org/10.2307/1938672.CrossRefGoogle Scholar
  3. Bugiani, R., Govoni, P., Bottazzi, R., Giannico, P., Montini, B., & Pozza, M. (1995). Monitoring airborne concentrations of sporangia of Phytophthora infestans in relation to tomato late blight in Emilia Romagna, Italy. Aerobiologia, 11, 41–46.CrossRefGoogle Scholar
  4. Campbell, P., Bendek, C., & Latorre, B. A. (2007). Risk of powdery mildew (Erysiphe necator) outbreaks on grapevines in relation to cluster development. Cienc. E Investig. Agrar., 34, 5–11.Google Scholar
  5. Carisse, O., Savary, S., & Willocquet, L. (2008). Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed Botrytis leaf blight epidemics. Phytopathology, 98, 38–44.CrossRefGoogle Scholar
  6. Coombe, B. G. (1995). Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1, 104–110.Google Scholar
  7. Cortesi, P., Bisiach, M., Ricciolini, M., & Gadoury, D. M. (1997). Cleistothecia of Uncinula necator—an additional source of inoculum in Italian vineyards. Plant Disease, 81, 922–926.CrossRefGoogle Scholar
  8. Cunha, M., Ribeiro, H., & Abreu, I. (2016). Pollen-based predictive modelling of wine production: application to an arid region. European Journal of Agronomy, 73, 42–54.  https://doi.org/10.1016/j.eja.2015.10.008.CrossRefGoogle Scholar
  9. Diaz, M. R., Iglesias, I., & Jato, V. (1998). Seasonal variation of airborne fungal spore concentrations in a vineyard of North-West Spain. Aerobiologia, 14, 221–227.  https://doi.org/10.1007/BF02694210.CrossRefGoogle Scholar
  10. Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927–930.  https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.CrossRefGoogle Scholar
  11. Fernández-Gonzalez, M., Rodríguez-Rajo, F. J., Jato, V., & Aira, M. J. (2009). Incidence of fungals in a vineyard of the denomination of origin ribeiro [Ourense-North-Western Spain]. Annals of Agricultural and Environmental Medicine, 16, 263–271.Google Scholar
  12. Fernández-González, M., Escuredo, O., Rodríguez-Rajo, F. J., Aira, M. J., & Jato, V. (2011). Prediction of grape production by grapevine cultivar Godello in north-west Spain. The Journal of Agricultural Science, 149, 725–736.  https://doi.org/10.1017/S0021859611000244.CrossRefGoogle Scholar
  13. Fernandez-Gonzalez, M., Rodriguez-Rajo F. J., Jato, V., Aira M., J., Ribeiro, H., Oliveira, M., Abreu, I., (2012). Forecasting ARIMA models for atmospheric vineyard pathogens in Galicia and Northern Portugal: Botrytis cinerea spores. Annals of Agricultural and Environmental Medicine 19.Google Scholar
  14. Fernández-González, M., Rodríguez-Rajo, F. J., Escuredo, O., & Aira, M. J. (2013). Optimization of integrated pest management for powdery mildew (<span class="italic">Unincula necator</span>) control in a vineyard based on a combination of phenological, meteorological and aerobiological data [WWW Document]. The Journal of Agricultural Science, 151, 648–658.  https://doi.org/10.1017/S0021859612000743.CrossRefGoogle Scholar
  15. Gadoury, D.M., Seem, R.C., Pearson, R.C., Wilcox, W.F., Dunst, R.M. (2007). Effects of Powdery Mildew on Vine Growth, yield, and Quality of Concord Grapes [WWW Document].  https://doi.org/10.1094/PDIS.2001.85.2.137
  16. Galán, C., González, P. C., Teno, P. A., & Vilches, E. D. (2007). Spanish Aerobiology Network (REA): management and quality manual. Córdoba: Servicio de Publicaciones, Universidad de Córdoba.Google Scholar
  17. Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., Berger, U., Clot, B., Brandao, R., & Group, E. Q. W. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.  https://doi.org/10.1007/s10453-014-9335-5.CrossRefGoogle Scholar
  18. Galan, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., Fernandez-González, D., Frenguelli, G., Gehrig, R., Isard, S., Levetin, E., Li, D. W., Mandrioli, P., Rogers, C. A., Thibaudon, M., Sauliene, I., Skjøth, C., Smith, M., & Sofiev, M. (2017). Recommended terminology for aerobiological studies. Aerobiologia, 33, 293–295.CrossRefGoogle Scholar
  19. Gee, L. M., Stummer, B. E., Gadoury, D. M., Biggins, L. T., & Scott, E. S. (2000). Maturation of cleistothecia of Uncinula necator (powdery mildew) and release of ascospores in southern Australia. Australian Journal of Grape and Wine Research, 6, 13–20.CrossRefGoogle Scholar
  20. Goidanich, G., Casarini, B., & Foschi, S. (1957). Lotta antiperonosporica e calendario d’incubazione. G. Agric., 13, 11–14.Google Scholar
  21. Grove, G.G. (2007). Perennation of Uncinula necator in Vineyards of Eastern Washington [WWW Document].  https://doi.org/10.1094/PDIS.2004.88.3.242
  22. Hirst, J.M., (1952). An Automatic Volumetric Spore Trap. The Annals of Applied Biology 39, 257–265.  https://doi.org/10.1111/j.1744-7348.1952.tb00904.x.CrossRefGoogle Scholar
  23. Holb, I. J., & Füzi, I. (2016). Monitoring of ascospore density of Erysiphe necator in the air in relation to weather factors and powdery mildew development. European Journal of Plant Pathology, 144, 751–762.  https://doi.org/10.1007/s10658-015-0823-4.CrossRefGoogle Scholar
  24. Hothorn, T., Hornik, K., & Zeileis, A. (2012). Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics.  https://doi.org/10.1198/106186006X133933.
  25. Kelly, H. Y., Dufault, N. S., Walker, D. R., Isard, S. A., Schneider, R. W., Giesler, L. J., Wright, D. L., Marois, J. J., & Hartman, G. L. (2015). From select agent to an established pathogen: the response to Phakopsora pachyrhizi (soybean rust) in North America. Phytopathology, 105, 905–916.CrossRefGoogle Scholar
  26. Kiefer, B., Riemann, M., Büche, C., Kassemeyer, H.-H., & Nick, P. (2002). The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola. Planta, 215, 387–393.CrossRefGoogle Scholar
  27. Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Klose, R., Meier, U., & Weber, E. (1994). Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Wein-Wiss, 49, 66–70.Google Scholar
  28. Mariani, L., Failla, O., Monte, G., Facchinetti, D. (2007). IPHEN: a model for real time production of grapevine phenological maps, in: Climate and Viticulture. Consejero de Agricultura y Alimentation de Gobierno del Aragona, pp. 272–278.Google Scholar
  29. Meier, U. (1997). Growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag.Google Scholar
  30. Moyer, M. M., Gadoury, D. M., Wilcox, W. F., & Seem, R. C. (2014). Release of Erysiphe necator Ascospores and Impact of Early Season Disease Pressure on Vitis vinifera Fruit Infection. Am. J. Enol. Vitic. ajev., 2014, 13111–13324.  https://doi.org/10.5344/ajev.2014.13111.Google Scholar
  31. OIV. (2015). Compendio de métodos internacionales de análisis de los vinos y mostos, OIV. ed. Paris.Google Scholar
  32. Oliveira, M., Guerner-Moreira, J., Mesquita, M. M., & Abreu, I. (2009). Important phytopathogenic airborne fungal spores in a rural area: incidence of Botrytis cinerea and Oidium spp. Annals of Agricultural and Environmental Medicine, 16, 197–204.Google Scholar
  33. Ortega-Farías, S. O., Lozano, P., Moreno, Y., & León, L. (2002). Desarrollo de modelos predictivos de fenología y evolución de madurez en vid para vino cv. Cabernet Sauvignon y Chardonnay. Agric. Téc., 62, 27–37.Google Scholar
  34. Pedro Júnior, M.J., Sentelhas, P.C. (2003). Clima e produção. Uva Tecnol. Produção Pós-Colheita Merc. Porto Alegre Cinco Cont. 63–107.Google Scholar
  35. R Development Core Team. (2008). R: A language and environment for statistical computing R Foundation for Statistical Computing [WWW Document]. URL http://www.r-project.org./ (Accessed 17 July 2017).
  36. Rodríguez-Rajo, F. J., Jato, V., Fernández-González, M., & Aira, M. J. (2010). The use of aerobiological methods for forecasting Botrytis spore concentrations in a vineyard. Grana, 49, 56–65.  https://doi.org/10.1080/00173130903472393.CrossRefGoogle Scholar
  37. Rossi, V., Caffi, T., Legler, S.E., 2010. Dynamics of Ascospore Maturation and Discharge in Erysiphe necator, the Causal Agent of Grape Powdery Mildew [WWW document].  https://doi.org/10.1094/PHYTO-05-10-0149
  38. Rossi, V., Caffi, T., & Gobbin, D. (2013). Contribution of molecular studies to botanical epidemiology and disease modelling: grapevine downy mildew as a case-study. European Journal of Plant Pathology, 135, 641–654.CrossRefGoogle Scholar
  39. Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. (2015). Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59, 25–36.  https://doi.org/10.1007/s00484-014-0818-4.CrossRefGoogle Scholar
  40. Sousa, L., Camacho, I. C., Grinn-Gofroń, A., & Camacho, R. (2016). Monitoring of anamorphic fungal spores in Madeira region (Portugal), 2003–2008. Aerobiologia, 32, 303–315.  https://doi.org/10.1007/s10453-015-9400-8.CrossRefGoogle Scholar
  41. West, J. S., & Kimber, R. B. E. (2015). Innovations in air sampling to detect plant pathogens. The Annals of Applied Biology, 166, 4–17.  https://doi.org/10.1111/aab.12191.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Botany, Ecology and Plant Physiology Celestino Mutis building 3th floor Campus de Rabanales 14071 CórdobaCórdoba UniversityCórdobaSpain

Personalised recommendations