Skip to main content
Log in

Functional characterization of CgPBS2, a MAP kinase kinase in Colletotrichum gloeosporioides, using osmotic stress sensitivity as a selection marker

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Colletotrichum leaf disease of Hever brasiliensis (rubber tree) caused by C. gloeosporioides is one of the major causes of declining rubber tree yields. Little is known about the fungal molecular characters that are important for pathogenicity on rubber tree and fungicide resistance. In this study, we cloned the CgPBS2 gene, the key component of the Hog1 pathway which controls various aspects of osmoregulation and fungicide resistance in various fungal pathogens, including the causal agent of Colletotrichum leaf disease of rubber tree. We characterized the function of the CgPBS2 gene by reverse genetics. Because the Hog1 pathway plays an important role in stress responses, we obtained a CgPBS2 gene deletion mutant by PEG-mediated transformation of protoplasts after reducing the concentration of sucrose in the screening medium from 1.0 M to 0.2 M. Then, the complemented transformants and GFP-labelled CgPBS2 gene transformants were selected directly under highly hyperosmotic medium (PDA + 1.5 M sorbitol) without using other selectable gene markers. Phenotypic observations showed that the CgPBS2 protein was mainly localized in the conidial cytoplasm of the CgPBS2-GFP transformants. In addition, disruption of CgPBS2 led to sensitivity to hyperosmosis and high salt concentration as well as resistance to the fungicide fludioxonil. No obvious difference in virulence was observed between the null mutant and the wild-type strain. These results provide insights into the role of the CgPBS2 gene in osmotic stress, salt stress and fludioxonil resistance and suggest that osmotic stress sensitivity can be used as a selection marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A. I., Eisman, B., Nombela, C., & Pla, J. (2003). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryotic Cell, 2, 351–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahn, Y. S., Kojima, K., Cox, G. M., & Heitman, J. (2006). A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Molecular Biology of the Cell, 17, 3122–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boguslawski, G. (1992). PBS 2, a yeast gene encoding a putative protein kinase, interacts with the RAS2 pathway and affects osmotic sensitivity of Saccharomyces cerevisiae. Journal of General Microbiology, 138, 2425–2432.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Z. Y., Li, G. H., Lin, C. H., Shi, T., Zhai, L. G., Chen, Y. P., & Huang, G. X. (2013). Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutangenesis. Microbiological Research, 168, 340–350.

    Article  CAS  PubMed  Google Scholar 

  • Catlett, N. L., Lee, B. N., Yoder, O. C., & Turgeon, B. G. (2003). Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Newsletter, 50, 9–11.

    Article  Google Scholar 

  • Chang, L., & Karin, M. (2001). Mammalian MAP kinase signaling cascades. Nature, 410(1), 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, K. P., Xu, J. R., Smirnoff, N., & Talbo, t. N. J. (1999). Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell, 11, 2045–2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, C., Sarfati, J., Latge, J. P., & Calderone, R. (2006). The role of the sakA (Hog1) and tcsB (S1n1) genes in the oxidant adaptation of Aspergillus fumigatus. Medical Mycology, 44, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Gritz, L., & Davies, J. (1983). Plasmid-encoded hygromycin B resistance: The sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene, 25, 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Gustin, M. C., Albertyn, J., Alexander, M., & Davenport, K. (1998). MAPkinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 62, 1264–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann, S., Krantz, M., & Nordlander, B. (2007). Yeast osmoregulation. Methods in Enzymology, 428, 29–45.

    Article  CAS  PubMed  Google Scholar 

  • Igbaria, A., Lev, S., Rose, M. S., Lee, B. N., Hadar, R., Deqani, Q., & Horwitz, B. A. (2008). Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Molecular Plant - Microbe Interactions, 21, 769–780.

    Article  CAS  PubMed  Google Scholar 

  • Jayashinghe, C. K., Fernando, T. H., & Priyanka, U. M. (1997). Colletotrichum acutatum is the main cause of Colletotrichum leaf disease of rubber in Sri Lanka. Mycopathologia, 137, 53–56.

    Article  Google Scholar 

  • Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T., & Okuno, T. (2004). Fungicide activity through activation of a fungal signaling pathway. Molecular Microbiology, 53(6), 1785–1796.

    Article  CAS  PubMed  Google Scholar 

  • Kovar, J. L., Zhang, J., Funke, R. P., & Weeks, D. P. (2002). Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. The Plant Journal, 29(1), 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Kuwano, T., Shirataki, C., & Itoh, Y. (2008). Comparison between polyethyleneglycol- and polyethylenimine– Mediated transformation of Aspergillus nidulans. Current Genetics, 54, 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. H., Cai, Z. Y., Shi, T., Dai, Y. K., Li, C. P., & Huang, G. X. (2013). The use of T-DNA tagging to isolate mutants of Colletotrichum gloeosporioides and Colletotrichum acutatum with reduced virulence against Hevea brasiliensis. Forest Pathology, 43, 289–296.

    Article  Google Scholar 

  • Lin, C. H., Liu, X. B., Shi, T., Li, C. P., & Huang, G. X. (2018). The Colletotrichum gloeosporioides perilipin homologue CAP20 regulates functional appressorial formation and fungal virulence. Journal of Phytopathology, 166, 216–225.

    Article  CAS  Google Scholar 

  • Mehrabi, R., Zwiers, L. H., de Waard, M.A., Kema, G.H. (2006). MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Molecular Plant-Microbe Interactions, 11, 1262–1269.

  • Mohler, W. A., & Blau, H. M. (1994). Membrane-bound neomycin phosphotransferase confers drug-resistance in mammalian cells: A marker for high-efficiency targeting of genes encoding secreted and cell-surface proteins. Somatic Cell and Molecular Genetics, 20(3), 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki, A., Kihara, J., Mori, C., & Arase, S. (2007). A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiological Research, 162, 108–114.

    Article  CAS  PubMed  Google Scholar 

  • Park, S. H., Choi, E. S., Kim, M. J., Cha, B. J., Yang, M. S., & Kim, D. H. (2004). Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Molecular Microbiology, 51, 1267–1277.

    Article  CAS  PubMed  Google Scholar 

  • Posas, F., & Saito, H. (1997). Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: Scaffold role of Pbs2p MAPKK. Science, 276, 1702–1705.

    Article  CAS  Google Scholar 

  • Reyes, G., Romans, A., Nguyen, C. K., & May, G. S. (2006). Novel mitogen-activated protein kinase MpkC of Aspergillus fumigates is required for utilization of polyalcohol sugars. Eukaryotic Cell, 5, 1934–1940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rispail, N., Soanes, D. M., Ant, C., Czajowski, R., Grünler, A., Huguet, R., Perez-Nadales, E., Poli, A., Sartorel, E., Valiante, V., Yang, M., Beffa, R., Brakhage, A. A., Gow, N. A., Kahmann, R., Lebrun, M. H., Lenasi, H., Perez-Martin, J., Talbot, N. J., Wendland, J., & Di Pietro, A. (2009). Comparative genomics of MAP kinase and calcium-calcineurin signaling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 46(4), 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Sesma, A., & Osbourn, A. E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431, 582–586.

    Article  CAS  Google Scholar 

  • Sharma, M., & Kulshrestha, S. (2015). Colletotrichum gloeosporioides: An anthracnose causing pathogen of fruits and vegetables. Biosciences, Biotechnology Research Asia, 12(2), 1233–1246.

    Article  Google Scholar 

  • Tatebayashi, K., Takekawa, M., & Saito, H. (2003). A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. The EMBO Journal, 22(14), 3624–3634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M., & Botterman, J. (1987). Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. The EMBO Journal, 6, 2519–2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, T., Nguyen, C. K., Romans, A., & May, G. S. (2004). A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryotic Cell, 3(2), 557–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong, H. Y., Bakar, F. D., Illias, R. M., Mahadi, N. M., & Murad, A. M. (2013). Cgl-SLT2 is required for appressorium formation, sporulation and pathogenicity in Colletotrichum gloeosporioides. Brazilian Journal of Microbiology, 44(4), 1241–1250.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Xue, C., Kim, Y., & Xu, J. R. (2004). A ligation-PCR approach for generating gene replacement constructs in Magnaporthe grisea. Fungal Genetics Newsletter, 51, 17–18.

    Article  Google Scholar 

  • Zhao, X., Mehrabi, R., & Xu, J. R. (2007). Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell, 6(10), 1701–1714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 31760499, No.31201468) and the earmarked fund for China Agriculture Research System (No. CARS-33-GW-BC1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhua Lin or Guixiu Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and animal studies

This research did not involve human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Huang, G., Zheng, F. et al. Functional characterization of CgPBS2, a MAP kinase kinase in Colletotrichum gloeosporioides, using osmotic stress sensitivity as a selection marker. Eur J Plant Pathol 152, 801–813 (2018). https://doi.org/10.1007/s10658-018-1529-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1529-1

Keywords

Navigation