European Journal of Plant Pathology

, Volume 152, Issue 3, pp 845–851 | Cite as

The lipopeptide surfactin triggers induced systemic resistance and priming state responses in Arachis hypogaea L.

  • J. Rodríguez
  • M. L. Tonelli
  • M. S. Figueredo
  • F. Ibáñez
  • A. FabraEmail author


Bioactive metabolites produced by multiple strains of Bacillus spp. stimulate plant defense responses. Among these, the cyclic lipopeptide surfactin was identified as an Induced Systemic Resistance (ISR) elicitor in different plant species. However, the underlying mechanisms involved in the ISR elicitation and the priming state costs in peanut plants (Arachis hypogaea L.) remain unknown. In this work, we demonstrated the ability of surfactin from B. subtilis to induce systemic resistance against Sclerotium rolfsii in peanut plants, and showed that this response involves key characteristics of priming-mediated resistance defense. Application of surfactin significantly reduced S. rolfsii disease incidence and severity on peanut plants, and an increased shoot and root dry weight was observed in surfactin pre-treated and pathogen challenged plants compared to non-treated challenged plants. In addition, peroxidase activity and phenolic compounds deposition underneath the fungal infection zone were significantly higher in surfactin pre-treated and challenged plants than in non-surfactin treated challenged plants. Collectively, results from this work indicate that ISR activity elicited by surfactin involves a priming defense state with low fitness-related costs, providing an enhanced protection against S. rolfsii in peanut plants.


ISR Defense response Priming Peanut Surfactin 



This study was financially supported SECyT-UNRC, CONICET and ANPCyT.

Johan Stiben Rodriguez Melo is recipient of scholarship from FONCyT.

María Soledad Figueredo is recipient of scholarship from CONICET.

María Laura Tonelli, Fernando Ibáñez and Adriana Fabra are members of the Research Career from CONICET.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10658_2018_1524_MOESM1_ESM.pdf (191 kb)
ESM 1 (PDF 190 kb)


  1. Adandonon, A., Regnier, T., & Aveling, T. A. S. (2017). Phenolic content as an indicator of tolerance of cowpea seedlings to Sclerotium rolfsii. European Journal of Plant Pathology, 149(2), 245–251. Scholar
  2. Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc, 2(4), 875–877.
  3. Anand, T., Bhaskaran, R., Raguchander, T., Samiyappan, R., Prakasam, V., & Gopalakrishnan, C. (2009). Defence responses of chilli fruits to Colletotrichum capsici and Alternaria alternata. Biologia Plantarum, 53(3), 553–559. Scholar
  4. Babar, M. M., Khan, S. F., Zargaham, M. K., Zaidi, N.-u.-S. S., & Gul, A. (2016). Plant-Microbe Interactions: A Molecular Approach. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, Soil and Microbes: Volume 2: Mechanisms and Molecular Interactions (pp. 1–22). Cham: Springer International Publishing.Google Scholar
  5. Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., Dommes, J., & Ongena, M. (2014). Plant defense stimulation by natural isolates of bacillus depends on efficient surfactin production. Molecular Plant-Microbe Interactions, 27(2), 87–100. Scholar
  6. Cle, C., Hill, L. M., Niggeweg, R., Martin, C. R., Guisez, Y., Prinsen, E., et al. (2008). Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry, 69(11), 2149–2156. Scholar
  7. Conrath, U., Beckers, G. J., Langenbach, C. J., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. Annual Review of Phytopathology, 53, 97–119. Scholar
  8. De Vleesschauwer, D., & Höfte, M. (2009). Chapter 6 Rhizobacteria-induced systemic resistance. In Advances in Botanical Research (Vol. 51, pp. 223–281): Academic Press.Google Scholar
  9. Figueredo, M. S., Tonelli, M. L., Ibáñez, F., Morla, F., Cerioni, G., del Carmen Tordable, M., et al. (2017). Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiological Research, 197(Supplement C), 65–73. Scholar
  10. Gogoi, R., Singh, D. V., & Srivastava, K. D. (2001). Phenols as a biochemical basis of resistance in wheat against Karnal bunt. Plant Pathology, 50(4), 470–476. Scholar
  11. Gupta, C., Dubey, R., & Maheshwari, D. (2002). Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent pseudomonas. Biology and Fertility of Soils, 35(6), 399–405. Scholar
  12. Heil, M. (2002). Ecological costs of induced resistance. Current Opinion in Plant Biology, 5(4), 345–350.CrossRefGoogle Scholar
  13. Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Baurle, I., Geiselhardt, S., et al. (2016). Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews of the Cambridge Philosophical Society, 91(4), 1118–1133. CrossRefGoogle Scholar
  14. Hoagland, D. R., & Arnon, D. I. (1950). The water culture method for growing plants without soil. California Agricultural Experiment Station Circulation, 347, 31.Google Scholar
  15. Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J. P., Thonart, P., et al. (2009). Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant-Microbe Interactions, 22(4), 456–468. Scholar
  16. Koc, E., & Ustun, A. S. (2011). Differential induction of phenylalanine ammonia lyase and phenolics in peppers (Capsicum annuum) in response to inoculation with Phytophthora capsici. International Journal of Agriculture and Biology, 13(6), 881–887.Google Scholar
  17. Kong, Q., Shan, S., Liu, Q., Wang, X., & Yu, F. (2010). Biocontrol of aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. International Journal of Food Microbiology, 139(1), 31–35. Scholar
  18. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. Scholar
  19. Mariutto, M., & Ongena, M. (2015). Chapter two - molecular patterns of Rhizobacteria involved in plant immunity elicitation. In H. Bais, & J. Sherrier (Eds.), Advances in Botanical Research (Vol. 75, pp. 21–56): Academic Press.Google Scholar
  20. Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M., Pozo, M. J., et al. (2016). Recognizing Plant Defense Priming. Trends in Plant Science, 21(10), 818–822. Scholar
  21. Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485–512. Scholar
  22. Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Weber, N., Veberic, R., Stampar, F., Munda, A., & Koron, D. (2013). Alteration of the content of primary and secondary metabolites in strawberry fruit by Colletotrichum nymphaeae infection. Journal of Agricultural and Food Chemistry, 61(25), 5987–5995. Scholar
  23. Niranjan Raj, S., Lavanya, S. N., Amruthesh, K. N., Niranjana, S. R., Reddy, M. S., & Shetty, H. S. (2012). Histo-chemical changes induced by PGPR during induction of resistance in pearl millet against downy mildew disease. Biological Control, 60(2), 90–102. Scholar
  24. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125. Scholar
  25. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., & Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9(4), 1084–1090. Scholar
  26. Perez-Garcia, A., Romero, D., & de Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: Biotechnological applications of bacilli in agriculture. Current Opinion in Biotechnology, 22(2), 187–193. Scholar
  27. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375. Scholar
  28. Schovánková, J., & Opatová, H. (2011). Changes in phenols composition and activity of phenylalanine-ammonia lyase in apples after fungal infections. Horticultural Science, 38, 1), 1–1),10.CrossRefGoogle Scholar
  29. Sosa Alderete, L. G., Talano, M. A., Ibanez, S. G., Purro, S., Agostini, E., Milrad, S. R., et al. (2009). Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. Journal of Biotechnology, 139(4), 273–279. Scholar
  30. Venturi, V., & Keel, C. (2016). Signaling in the rhizosphere. Trends in Plant Science, 21(3), 187–198. Scholar
  31. Vincent, J., & IBP. (1970). A manual for the practical study of the root-nodule Bacteria. IBP Handbuch, 45(5), 440–440. Scholar
  32. Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R., et al. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5, 655. Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • J. Rodríguez
    • 1
  • M. L. Tonelli
    • 1
  • M. S. Figueredo
    • 1
  • F. Ibáñez
    • 1
  • A. Fabra
    • 1
    Email author
  1. 1.Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-químicas y NaturalesUniversidad Nacional de Río CuartoCórdobaArgentina

Personalised recommendations