Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 3, pp 841–844 | Cite as

Identification of Aphis spiraecola as a vector of Citrus yellow vein clearing virus

  • Yanhui Zhang
  • Yingli Wang
  • Qin Wang
  • Mengji Cao
  • Changyong Zhou
  • Yan Zhou
Article
  • 303 Downloads

Abstract

Citrus yellow vein clearing virus (CYVCV) was first discovered in China. Now CYVCV is widely distributed in the field, and has caused major economic losses in lemon production in China. However, no vector has been shown to transmit CYVCV from citrus to citrus. In this study, transmission of CYVCV by Aphis spiraecola was investigated. After a 48 h acquisition access period, 50 apterae adults of A. spiraecola were transferred in virus-free Pineapple sweet orange seedlings and allowed to feed for 24 h. Six months post inoculation, CYVCV was detected in 4.4% of receptor plants by RT-PCR. Furthermore, after inoculation access period was extended to 48 h, the transmission rate of CYVCV by A. spiraecola was increased drastically to 23.3%. The present study confirmed that CYVCV is transmitted from citrus to citrus by A. spiraecola in the glasshouse under controlled conditions.

Keywords

Citrus yellow vein clearing virus Aphis spiraecola Transmission rate 

Notes

Acknowledgments

This work was partially supported by Intergovernmental International Science, Technology and Innovation (STI) Collaboration Key Project of China’s National Key R&D Programme (NKP) (2017YFE0110900), Chongqing Research Program of Basic Research and Frontier Technology (cstc2015jcyjBX0043, cstc2017jcyjAX0150).

Compliance with ethical standards

The authors declare that ethical standards have been followed and that no human participants or animals were involved in this research.

Competing interests

The authors declare that they have no competing interests.

References

  1. Alshami, A. A. A., Ahlawat, Y. S., & Pant, R. P. (2003). A hitherto unreported yellow vein clearing disease of citrus in India and its viral etiology. Indian Phytopathology, 56(4), 422–427.Google Scholar
  2. Bar-Joseph, M., Marcus, R., & Lee, R. F. (1989). The continuous challenge of Citrus tristeza virus control. Annual Review of Phytopathology, 27(1), 291–316.CrossRefGoogle Scholar
  3. Catara, A., Azzaro, A., Davino, M., & Polizzi, G. (1993). Yellow vein clearing of lemon in Pakistan. In: Moreno P,da Graca J.V., Timmer L.W., In: Moreno P., da Graca J.V., Timmer L.W. (eds). Proceedings 12th conference of the international Organzation of Citrus virologist, New Delhi, India, 364–367.Google Scholar
  4. Chen, H. M., Li, Z. A., Wang, X. F., Zhou, Y., Tang, K. Z., Zhou, C. Y., Zhao, X. Y., & Yue, J. Q. (2014). First report of Citrus yellow vein clearing virus on lemon in Yunnan, China. Plant Disease, 98(12), 1747.CrossRefGoogle Scholar
  5. Chen, H. M., Wang, X. F., Zhou, Y., Zhou, C. Y., Guo, J., & Li, Z. A. (2015). Biological characterization and RT-PCR detection of a new disease of eureka lemon. Journal of Plant Protection, 42(4), 557–563.Google Scholar
  6. Chen, H. M., Ma, D. D., Jin, X., Li, T. S., Deng, Y. Q., Liu, C. H., Wu, Q., Li, Z. A., & Zhou, Y. (2017). The stability and quantity of coat protein gene of Citrus yellow vein clearing virus in different citrus cultivars. Acta Horticulturae Sinica, 44(1), 106–112.Google Scholar
  7. Escriu, F., Perry, K. L., & García-Arenal, F. (2000). Transmissibility of Cucumber mosaic virus by Aphis gossypii correlates with viral accumulation and affected by the presence of its satellite RNA. Phytopathology, 90(10), 1068–1072.CrossRefGoogle Scholar
  8. Hashmian, B. S. M., & Aghajanzadeh, S. (2017). Occurrence of Citrus yellow vein clearing virus in citrus species in Iran. Journal of Plant Pathology, 99(1), 290.Google Scholar
  9. Loconsole, G., Önelge, N., Potere, O., Giampetruzzi, A., Bozan, O., Satar, S., De-Stradis, A., Savino, V., Yokomi, R. K., & Saponari, M. (2012). Identification and characterization of Citrus yellow vein clearing virus, a putative new member of the genus Mandarivirus. Phytopathology, 102(12), 1168–1175.CrossRefGoogle Scholar
  10. Moreno, A., Fereres, A., & Cambra, M. (2009). Quantitative estimation of Plum pox virus targets acquired and transmitted by a single Myzuspersicae. Archives of Virology, 154(9), 1391–1399.CrossRefGoogle Scholar
  11. Önelge, N. (2002). First report of yellow vein clearing of lemons in Turkey. Journal of Turkish Phytopathology, 32, 53–55.Google Scholar
  12. Önelge, N., Satar, S., Elibüyük, Ö., Bozan, O., & Kamberoğlu, M. (2011). Transmission studies on Citrus yellow vein clearing virus. In proceeding of the. In 18th conference of the International Organization of Citrus Virus, Brazil (pp. 11–14).Google Scholar
  13. Zhou, Y., Chen, H. M., Cao, M. J., Wang, X. F., Jin, X., Liu, K. H., & Zhou, C. Y. (2017). Occurrence, distribution and molecular characterization of Citrus yellow vein clearing virus in China. Plant Disease, 101(1), 137–143.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Yanhui Zhang
    • 1
    • 2
  • Yingli Wang
    • 1
    • 2
  • Qin Wang
    • 1
    • 2
  • Mengji Cao
    • 1
    • 2
  • Changyong Zhou
    • 1
    • 2
  • Yan Zhou
    • 1
    • 2
  1. 1.National Citrus Engineering Research Center, Citrus Research InstituteSouthwest UniversityChongqingChina
  2. 2.Academy of Agricultural SciencesSouthwest UniversityChongqingChina

Personalised recommendations