Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 3, pp 769–781 | Cite as

A chalcone synthase controls the verticillium disease resistance response in both Arabidopsis thaliana and cotton

  • Kai Jian Lei
  • Li Zhang
  • Xiao Yu Du
  • Yi An
  • Gai Hong Chang
  • Guo Yong An
Article
  • 81 Downloads

Abstract

Verticillium wilt is a devastating disease caused by the soil-borne fungus Verticillium dahliae that causes severe wilt symptoms in more than 400 plant species, including economically important cotton. However, the molecular mechanism of plant resistance to Verticillium remains unclear. In this study, we identified an Arabidopsis mutant, vsad1 (verticillium sensitive and anthocyanin deficient 1), which showed more serious disease symptoms such as discoloration and chlorosis than wild-type Arabidopsis. vsad1 is a previously identified allele of the transparent testa 4 gene (tt4), which encodes chalcone synthase (CHS), a key enzyme involved in the biosynthesis of flavonoids. Our results showed that VSAD1 expression was induced in response to Verticillium dahliae infection. Overexpression of VSAD1 partially recovered the anthocyanin accumulation phenotype of the vsad1–1 mutant. The concentration of V. dahliae increased and ROS accumulation decreased in the vsad1 mutant after infection with V. dahliae. Knockdown of the homologous gene GhCHS in cotton plants increased their susceptibility to V. dahliae infection. Thus, we conclude that VSAD1 is involved in the regulation of plant resistance to Verticillium wilt.

Keywords

Arabidopsis thaliana Anthocyanin Verticillium wilt Sensitivity Map-based cloning 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31570263 and 31601140). We thank Dr. Xiaofeng Dai (Institute of Plant Physiology and Ecology, Beijing) for providing strain Vd-gfp77. We thank Robbie Lewis, MSc, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Authors’ contributions

KJL performed qRT-RCR experiments, gathered and analyzed the data, and wrote the manuscript. LZ performed plant physiological experiments. XYD performed map-based cloning and cotton related experiment. YA and GHC performed a large-scale screen experiment. GYA designed the research and revised manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10658_2018_1521_MOESM1_ESM.pdf (590 kb)
ESM 1 (PDF 590 kb)

References

  1. Abdul, R. R. N. Z. R., Izzati, Z. I., Bakar, S. A., & Mahiran, B. (2012). Enzymatic properties and mutational studies of chalcone synthase from Physcomitrella patens. International Journal of Molecular Sciences, 13, 9673–9691.CrossRefGoogle Scholar
  2. Atallah, Z. K., Bae, J., Jansky, S. H., Rouse, D. I., & Stevenson, W. R. (2007). Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology, 97, 865–872.CrossRefPubMedGoogle Scholar
  3. Bejaranoalcazar, J., Melerovara, J. M., Blancolopez, M. A., & Jimenezdiaz, R. M. (1995). Influence of inoculum density of defoliating and nondefoliating pathotypes of Verticillium dahliae on epidemics of Verticillium wilt of cotton in southern Spain. Phytopathology, 85, 1474–1481.CrossRefGoogle Scholar
  4. Benedetti, C. E., & Arruda, P. (2002). Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiology, 128, 1255–1263.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brisson, L. F., Tenhaken, R., & Lamb, C. (1994). Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell, 6, 1703–1712.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buer, C. S., Imin, N., & Djordjevic, M. A. (2010). Flavonoids: new roles for old molecules. Journal of Integrative Plant Biology, 52, 98–111.CrossRefPubMedGoogle Scholar
  7. Chen, T., Kan, J., Yang, Y., Ling, X., Chang, Y., & Zhang, B. (2016). A Ve homologous gene from Gossypium barbadense, Gbvdr3, enhances the defense response against Verticillium dahliae. Plant Physiology and Biochemistry, 98, 101–111.CrossRefPubMedGoogle Scholar
  8. Chen, J., Li, N., Ma, X., Gupta, V. K., Zhang, D., Li, T., & Dai, X. (2017). The ectopic overexpression of the cotton Ve1 and Ve2-homolog sequences leads to resistance response to Verticillium wilt in Arabidopsis. Frontiers in Plant Science, 8, 844.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Doke, N., Miura, Y., Sanchez, L. M., Park, H. J., Noritake, T., Yoshioka, H., & Kawakita, K. (1996). The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defense—a review. Gene, 179, 45–51.CrossRefPubMedGoogle Scholar
  10. Falcone, F. M. L., Rius, S. P., & Paula, C. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3, 222.Google Scholar
  11. Ferrer, J. L., Austin, M. B., Stewart, C., & Noel, J. P. (2008). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry, 46, 356–370.CrossRefPubMedGoogle Scholar
  12. Fradin, E. F., Zhang, Z., Juarez Ayala, J. C., Castroverde, C. D., Nazar, R. N., Robb, J., Liu, C. M., & Thomma, B. P. (2009). Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiology, 150, 320–332.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fradin, E. F., Abd-El-Haliem, A., Masini, L., van den Berg, G. C. M., Joosten, M. H. A. J., & Thomma, B. P. H. J. (2011). Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiology, 156, 2255–2265.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gao, W., Long, L., Zhu, L. F., Xu, L., Gao, W. H., Sun, L. Q., Liu, L. L., & Zhang, X. L. (2013). Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Molecular and Cellular Proteomics, 12, 3690.CrossRefPubMedGoogle Scholar
  15. Gong, Q., Yang, Z., Wang, X., Butt, H. I., Chen, E., He, S., Zhang, C., Zhang, X., & Li, F. (2017). Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae. BMC Plant Biology, 17, 59.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Grotewold, E. (2006). The genetics and biochemistry of floral pigments. Annual Review of Plant Biology, 57, 761.CrossRefPubMedGoogle Scholar
  17. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6, 3901–3907.CrossRefPubMedGoogle Scholar
  18. Jiang, J., Fan, L. W., & Wu, W. H. (2005). Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Research, 15, 585–592.CrossRefPubMedGoogle Scholar
  19. Jun, Z., Zhang, Z., Gao, Y., Zhou, L., Fang, L., Chen, X., Ning, Z., Chen, T., Guo, W., & Zhang, T. (2015). Overexpression of GbRLK, a putative receptor-like kinase gene, improved cotton tolerance to Verticillium wilt. Scientific Reports, 5, 15048.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kawchuk, L. M., Hachey, J., Lynch, D. R., Kulcsar, F., van Rooijen, G., Waterer, D. R., Robertson, A., Kokko, E., Byers, R., Howard, R. J., Fischer, R., & Prufer, D. (2001). Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 98, 6511–6515.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.CrossRefPubMedGoogle Scholar
  22. Lei, K., Lin, Y., Ren, J., Bai, L., Miao, Y., An, G., & Song, C. (2016). Modulation of the phosphate-deficient responses by microRNA156 and its targeted squamosa promoter binding protein-like 3 in Arabidopsis. Plant and Cell Physiology, 57, 192.CrossRefPubMedGoogle Scholar
  23. Li, J., Zhu, L., Hull, J. J., Liang, S., Daniell, H., Jin, S., & Zhang, X. (2016). Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnology Journal, 14, 1956–1975.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu, N., Zhang, X., Sun, Y., Wang, P., Li, X., Pei, Y., Li, F., & Hou, Y. (2017). Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and fusarium wilts in cotton. Scientific Reports, 7, 39840.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Orozco-Cardenas, M., & Ryan, C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 6553–6557.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pang, Y., Shen, G., Wu, W., Liu, X., Lin, J., Tan, F., Sun, X., & Tang, K. (2005). Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Science, 168, 1525–1531.CrossRefGoogle Scholar
  27. Pantelides, I. S., Tjamos, S. E., & Paplomatas, E. J. (2010). Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae. Molecular Plant Pathology, 11, 191–202.CrossRefPubMedGoogle Scholar
  28. Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T., & Fernie, A. R. (2013). The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry, 72, 21–34.CrossRefPubMedGoogle Scholar
  29. Sergiev, I., Alexieva, V., & Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus de l Academie Bulgare des Sciences, 51, 121–124.Google Scholar
  30. Sun, C., Shao, Y., Vahabi, K., Lu, J., Bhattacharya, S., Dong, S., Yeh, K. W., Sherameti, I., Lou, B., Baldwin, I. T., & Oelmuller, R. (2014). The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biology, 14, 268.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Veronese, P., Narasimhan, M. L., Stevenson, R. A., Zhu, J. K., Weller, S. C., Subbarao, K. V., & Bressan, R. A. (2003). Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant Journal, 35, 574–587.CrossRefPubMedGoogle Scholar
  32. Wang, P., Zhang, X., Ma, X., Sun, Y., Liu, N., Li, F., & Hou, Y. (2017). Identification of CkSNAP33, a gene encoding synaptosomal-associated protein from Cynanchum komarovii, that enhances Arabidopsis resistance to Verticillium dahliae. PLoS One, 12, e0178101.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Winkel-Shirley, B. (2001). It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiology, 127, 1399.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5, 218–223.CrossRefPubMedGoogle Scholar
  35. Yadeta, K. A., Hanemian, M., Smit, P., Hiemstra, J. A., Pereira, A., Marco, Y., & Thomma, B. P. (2011). The Arabidopsis thaliana DNA-binding protein AHL19 mediates verticillium wilt resistance. Molecular Plant-Microbe Interactions, 24, 1582–1591.CrossRefPubMedGoogle Scholar
  36. Yang, Y., Ling, X., Chen, T., Cai, L., Liu, T., Wang, J., Fan, X., Ren, Y., Yuan, H., & Zhu, W. (2014). A cotton Gbvdr5 gene encoding a leucine-rich-repeat receptor-like protein confers resistance to Verticillium dahliae in transgenic Arabidopsis and upland cotton. Plant Molecular Biology Reporter, 33, 987–1001.CrossRefGoogle Scholar
  37. Yang, J., Ji, L., Wang, X., Zhang, Y., Wu, L., Yang, Y., & Ma, Z. (2015). Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt. Plant Cell Reports, 34, 1429–1441.CrossRefPubMedGoogle Scholar
  38. Zhang, Y., Wang, X., Yang, S., Chi, J., Zhang, G., & Ma, Z. (2011). Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Reports, 30, 2085–2096.CrossRefPubMedGoogle Scholar
  39. Zhang, B., Yang, Y., Chen, T., Yu, W., Liu, T., Li, H., Fan, X., Ren, Y., Shen, D., Liu, L., Dou, D., & Chang, Y. (2012). Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One, 7, e51091.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhang, W. W., Jiang, T. F., Cui, X., Qi, F. J., & Jian, G. L. (2013). Colonization in cotton plants by a green fluorescent protein labelled strain of Verticillium dahliae. European Journal of Plant Pathology, 135, 867–876.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Kai Jian Lei
    • 1
    • 2
  • Li Zhang
    • 1
  • Xiao Yu Du
    • 1
  • Yi An
    • 1
  • Gai Hong Chang
    • 1
  • Guo Yong An
    • 1
  1. 1.College of Life Sciences, State Key Laboratory of Cotton BiologyHenan UniversityKaifengPeople’s Republic of China
  2. 2.Pharmacy College of Henan UniversityKaifengPeople’s Republic of China

Personalised recommendations