Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 3, pp 759–768 | Cite as

Endophytes of Lippia citriodora (Syn. Aloysia triphylla) enhance its growth and antioxidant activity

  • Fahimeh Golparyan
  • Ali Azizi
  • Jalal Soltani
Article
  • 65 Downloads

Abstract

Endophytes of medicinal plants are valuable resources for plant growth promotion and lead drug discovery. Lemon verbena, Lippia citriodora Kunth. (Verbenaceae), is an ethnomedicinal shrub. Here, the endophytic bacterium Sphingomonas paucimobilis and the endophytic fungus Aspergillus sp. isolated from L. citriodora were used for plant interaction studies. Foliar spraying and soil drenching methods of endophyte’s inocula application were used for in planta assays. The results showed that both fungal and bacterial endophytes increased the growth parameters of L. citriodora including plant height, leaf number, fresh weight and dry weight of shoot, root and leaf. Indeed, soil drenching of S. paucimobilis increased the root weight, but its foliar spray increased the plant height. Also, soil drenching of Aspergillus sp. increased the leaves dry weight, while its foliar spray increased the number of branches, leaves, and the leaves fresh weight. Soil drenching of either of both endophytes increased the antioxidant activity of L. citriodora’s foliage, but foliar sprays yielded lower increases. Endophytes had no apparent effects on the phenolics and flavonoids at the time of sampling, i.e. 30 days post-inoculation. Our findings indicate the enhancing effects of endophyte application on the growth and antioxidant property of L. citriodora.

Keywords

Lemon verbena Lippia citriodora Endophyte Antioxidant Growth promotion Sphingomonas paucimobilis Aspergillus 

Notes

Acknowledgments

Dr. Soheila Mirzaei, PhD, is appreciated for her assistance in microscopy studies for fungi identification. This work was financially supported by a grant from Bu-Ali Sina University (BASU) to A. Azizi. J. Soltani dedicates this work to Setia Soltani.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

10658_2018_1520_MOESM1_ESM.docx (17 kb)
Supplementary Table 1 (DOCX 16 kb)

References

  1. Abderrahim, F., Estrella, S., Susin, C., Arribas, S. M., Gonzalez, M. C., & Condezo-Hoyos, L. (2011). The antioxidant activity and thermal stability of lemon verbena (Aloysia triphylla) infusion. Journal of Medicinal Food, 14, 517–527.CrossRefPubMedGoogle Scholar
  2. Agarwhal, S., & Shende, S. T. (1987). Tetrazolium reducing microorganisms inside the root of Brassica species. Current Science, 56, 187–188.Google Scholar
  3. Argyropoulou, C., Daferera, D., Tarantilis, P. A., Fasseas, C., & Polissiou, M. (2007). Chemical composition of the essential oil from leaves of Lippia citriodora H.B.K. (Verbenaceae) at two developmental stages. Biochemical Systematics and Ecology, 35, 831–837.CrossRefGoogle Scholar
  4. Aswathy, A. J., Jasim, B., Jyothis, M., & Radhakrishnan, E. K. (2013). Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. Biotech, 3, 219–224.Google Scholar
  5. Bacon, C. W., & White, J. F. (2000). Microbial endophytes (pp. 341–388). New York: Marcel Dekker.Google Scholar
  6. Bagheri, A. A., Saadatmand, N. V., Nejadsatari, T., & Babaeizad, V. (2013). Effect of endophytic fungus, Piriformospora S. indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. International Journal of Advanced Biological and Biomedical Research, 1, 1337–1350.Google Scholar
  7. Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., et al. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. The New Phytologist, 180, 501–510.CrossRefPubMedGoogle Scholar
  8. Bangou, M. J., Méda, N. T. R., Thiombiano, A. M. E., Kiendrebéogo, M., & Zeba, B. (2012). Antioxidant and antibacterial activities of five Verbenaceae species from Burkina Faso. Current Research Journal of Biological Sciences, 4, 665–672.Google Scholar
  9. Brader, G., Compant, S., Mitter, B., Trognitz, F., & Sessitsch, A. (2014). Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology, 27, 30–37.Google Scholar
  10. Chang, C., Yang, M., Wen, H., & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.Google Scholar
  11. Chen, L., Xu, M., Zheng, Y., Men, Y., Sheng, J., & Shen, L. (2014). Growth promotion and induction of antioxidant system of tomato seedlings (Solanum lycopersicum L.) by endophyte TPs-04 under low night temperature. Scientia Horticulturae, 176, 143–150.CrossRefGoogle Scholar
  12. da Silva, T. F., Vollu, R. E., Jurelevicius, D., Alviano, D. S., Alviano, C. S., Blank, A. F., & Seldin, L. (2013). Does the essential oil of Lippia sidoides Cham. (pepper-rosmarin) affect its endophytic microbial community? BMC Microbiology, 13, 29.CrossRefPubMedPubMedCentralGoogle Scholar
  13. de Siqueira, V., Conti, R., Magali de Araújo, J., & Souza-Motta, C. M. (2011). Endophytic fungi from the medicinal plant Lippia sidoides Cham. And their antimicrobial activity. Symbiosis, 53, 89–95.CrossRefGoogle Scholar
  14. Duarte, M. C. T., Figueira G. M., Sartoratto A., et al. (2005). Anti-Candida activity of Brazilian medicinal plants. Journal of Ethnopharmacology, 97, 305–311.CrossRefPubMedGoogle Scholar
  15. Ernst, M., Mendgen, K. W., & Wirsel, S. G. R. (2003). Endophytic fungal mutualists: Seed-borne spp. enhance reed biomass production in axenic microcosms. Molecular Plant-Microbe Interactions, 16, 580–587.Google Scholar
  16. Funes, L., Fernández-Arroyo, S., Laporta, O., Pons, A., Roche, E., & Segura-Carretero, A. (2009). Correlation between plasma antioxidant capacity and verbascoside levels. Food Chemistry, 117, 589–598.CrossRefGoogle Scholar
  17. Gagné, S., Richard, C., Rouseau, H., & Antoun, H. (1987). Xylem-residing bacteria in alfalfa roots. Canadian Journal of Microbiology, 33, 996–1000.CrossRefGoogle Scholar
  18. Glick, B. R. (2015). Beneficial plant-bacterial interactions. Heidelberg: Springer.CrossRefGoogle Scholar
  19. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895–914.Google Scholar
  20. Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Doring, M., & Sessitsch, A. (2015). The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293–320.CrossRefPubMedGoogle Scholar
  21. Hoffman, M. T., Gunatilaka, M., Wijeratne, E. M. K., Gunatilaka, A. A. L., & Arnold, A. E. (2013). Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One, 8, e73132.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hol, W. H. G., de la Peña, E., Moens, M., & Cook, R. (2007). Interaction between a fungal endophyte and root herbivores of Ammophila arenaria. Basic and Applied Ecology, 8, 500–509.Google Scholar
  23. Hosseyni Moghaddam, M. S., & Soltani, J. (2014a). Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Annales de Microbiologie, 64, 753–761.CrossRefGoogle Scholar
  24. Hosseyni Moghaddam, M. S., & Soltani, J. (2014b). Psychrophilic endophytic fungi with bioactivity inhabit Cupressaceae plant family. Symbiosis, 63, 79–86.CrossRefGoogle Scholar
  25. Hosseyni Moghaddam, M. S., Soltani, J., Babalhavaeji, F., Hamzei, J., Nazeri, S., & Mirzaei, S. (2013). Bioactivities of endophytic Penicillia from Cupressaceae. Journal of Crop Protection, 2, 421–433.Google Scholar
  26. James, E. K., Gyaneshwar, P., Mathan, N., Barraquio, Q. L., Reddy, P. M., Iannetta, P. P. M., Olivares, F. L., & Ladha, J. K. (2002). Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Molecular Plant-Microbe Interactions, 15, 894–906.CrossRefPubMedGoogle Scholar
  27. Janarthine, S. R., & Eganathan, P. (2012). Plant growth promoting of endophytic Sporosarcina aquimarina SjAM16103 isolated from the pneumatophores of Avicennia marina L. International Journal of Microbiology, 1–10.Google Scholar
  28. Khani, A., Basavand, F., & Rakhshani, E. (2012). Chemical composition and insecticide activity of lemon verbena essential oil. Journal of Crop Protection, 1, 313–320.Google Scholar
  29. Kim, S., Lowman, S., Hou, G., Nowak, J., Flinn, B., & Mei, C. (2012). Growth promotion and colonization of switchgrass Panicum virgatum cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnology for Biofuels, 5, 37.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Luo, S., Xu, T., Chen, L., Chen, J., Rao, C., Xiao, X., Wan, Y., Zeng, G., Long, F., Liu, C., & Liu, Y. (2012). Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Applied Microbiology and Biotechnology, 93, 1745–1753.CrossRefPubMedGoogle Scholar
  31. Marks, S., & Clay, K. (1990). Effects of CO2 enrichment, nutrient addition and fungal endophyte infection on the growth of two grasses. Oecologia, 84, 207–214.CrossRefPubMedGoogle Scholar
  32. Mcdonald, S., Prenzler, P. D., Autolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73–84.CrossRefGoogle Scholar
  33. Mucciarelli, M., Scannerini, S., Bertea, C., & Maffei, M. (2003). In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. The New Phytologist, 158, 579–591.CrossRefGoogle Scholar
  34. Nemat Shahi, M. M., Elhami Rad, A. H., Pedram, N. A., & Nemat, S. N. (2014). Study of antioxidant activity and free radical scavenging ability of lemon Verbena (Lippia Citriodora). Advances in Natural and Applied Science, 8, 59–63.Google Scholar
  35. Owen, N. L., & Hundley, N. (2004). Endophytes the chemical synthesizers inside plants. Science Progress, 87, 79–99.CrossRefPubMedGoogle Scholar
  36. Pakvaz, S., & Soltani, J. (2016). Endohyphal bacteria from fungal endophytes of the Mediterranean cypress (Cupressus sempervirens) exhibit in vitro bioactivity. Forest Pathology, 46, 569–581.CrossRefGoogle Scholar
  37. Pascual, M. E., Slowing, K., Carretero, E., Sanchez, M. D., & Villar, A. (2001). Lippia: Traditional uses, chemistry and pharmacology: A review. Journal of Ethnopharmacology, 76, 201–214.CrossRefPubMedGoogle Scholar
  38. Redman, R. S., Dunigan, D. D., & Rodriguez, R. J. (2001). Fungal symbiosis: From mutualism to parasitism, who controls the outcome, host or invader? The New Phytologist, 151, 705–716.CrossRefGoogle Scholar
  39. Rodriguez, R. J., Redman, R. S., & Henson, J. M. (2004). The role of fungal symbioses in the adaptation of plants to high stress environments. Mitigation and Adaptation Strategies for Global Change, 9, 261–272.CrossRefGoogle Scholar
  40. Roos, I. M. M., & Hattingh, M. J. (1983). Scanning electron microscopy of Pseudomonas syringae pv. morspronorum on sweet cherry leaves. Phytopathology, 108, 18–25.CrossRefGoogle Scholar
  41. Rouhier, N., Koh, C. S., Gelhaye, E., Corbier, C., Favier, F., Didierjean, C., et al. (2008). Redox based anti-oxidant systems in plants: Biochemical and structural analyses. Biochimica et Biophysica Acta, 1780, 1249–1260.CrossRefPubMedGoogle Scholar
  42. Scott, R. I., Chard, J. M., Hocart, M. J., Lennard, J. H., & Graham, D. C. (1996). Penetration of potato tuber lenticels by bacteria in relation to biological control of blackleg disease. Potato Research, 39, 333–344.CrossRefGoogle Scholar
  43. Soltani, J., & Hosseyni Moghaddam, M. S. (2014). Diverse and bioactive endophytic aspergilli inhabit Cupressaceae plant family. Archives of Microbiology, 196, 635–644.CrossRefPubMedGoogle Scholar
  44. Soltani, J., & Hosseyni Moghaddam, M. S. (2015). Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens. Current Microbiology, 70, 580–586.CrossRefPubMedGoogle Scholar
  45. Soltani, J., Zaheri-Shoja, M., Hamzei, J., Hosseyni-Moghaddam, M. S., & Pakvaz, S. (2016). Diversity and bioactivity of endophytic bacterial community of Cupressaceae. Forest Pathology, 46, 353–361.CrossRefGoogle Scholar
  46. Sørensen, J., Sessitsch, A. (2015) Plant-associated bacteria lifestyle and molecular interactions. In Van Elsas, J.D., et al. (Eds.), Modern soil microbiology. 2nd edn. CRC Press, 2006, (pp. 211–236).Google Scholar
  47. Sprent, J. I., & de Faria, S. M. (1998). Mechanisms of infection of plants by nitrogen fixing organisms. Plant and Soil, 110, 157–165.CrossRefGoogle Scholar
  48. Stojichevich, S. S., Stanisavljevich, I. V., Velichkovich, D. T., Veljkovich, V. B., & Lazich, M. L. (2008). Comparative of the antioxidant and antimicrobial activities of Sempervium marmoreum L. extracts obtained by various extraction techniques. Journal of the Serbian Chemical Society, 73, 597–607.CrossRefGoogle Scholar
  49. Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491–502.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sun, Y., Cheng, Z., & Glick, B. R. (2009). The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiology Letters, 296, 131–136.CrossRefPubMedGoogle Scholar
  51. Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmüller, R., & Lou, B. (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology, 167, 1009–1017.CrossRefPubMedGoogle Scholar
  52. Tiwari, R., Awasthi, A., Mall, M., Shukla, A. K., Satya Srinivas, K. V. N., Syamasundar, K. V., & Kalra, A. (2013). Bacterial endophyte-mediated enhancement of in planta content of key terpenoidindole alkaloids and growth parameters of Catharanthus roseus. Industrial Crops and Products, 43, 306–310.CrossRefGoogle Scholar
  53. van Peer, R., & Schippers, B. (1989). Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Canadian Journal of Microbiology, 35, 456–463.CrossRefGoogle Scholar
  54. Varma, A., Verma, S., Sudha Sahay, N., Butehorn, B., & Franken, P. (1999). Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Applied and Environmental Microbiology, 65, 2741–2744.PubMedPubMedCentralGoogle Scholar
  55. White, J. F., & Torres, M. S. (2010). Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiologia Plantarum, 138, 440–446.CrossRefPubMedGoogle Scholar
  56. White, D. C., Sutton, S. D., & Ringelberg, D. B. (1996). The genus Sphingomonas: Physiology and ecology. Current Opinion in Biotechnology, 7, 301–306.CrossRefPubMedGoogle Scholar
  57. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102, 13386–13391.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Horticulture DepartmentBu-Ali Sina UniversityHamedanIran
  2. 2.Phytopathology DepartmentBu-Ali Sina UniversityHamedanIran

Personalised recommendations