Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 3, pp 823–831 | Cite as

Diaporthe novem isolated from sunflower (Helianthus annuus) and other crop and weed hosts in Australia

  • S. M. Thompson
  • Y. P. Tan
  • S. M. Neate
  • R. M. Grams
  • R. G. Shivas
  • K. Lindbeck
  • E. A. B. Aitken
Article

Abstract

In 2011, patches of lodged plants of Helianthus annuus (commercial sunflower) with stem lesions were observed in a commercial crop at Kingsthorpe, Queensland, Australia. Several species of Diaporthe were consistently isolated from the lesions. Diaporthe novem was identified by DNA sequence analysis. In following surveys, Diaporthe novem was found to be associated with other crop species including Cicer arietinum (chickpea), Glycine max (soybean), Lupinus alba (lupin), Sorghum bicolor (sorghum) Vicia faba (faba bean) and Vigna radiata (mungbean), and with the weed species Datura stramonium (common thornapple), Helianthus annuus (wild-type sunflower), Malva parviflora (small flowered mallow), Rapistrum rugosum (turnip weed), Sambucus gaudichaudiana (wild elderberry), Sisymbrium orientale (indian hedge mustard), Sonchus oleraceus (sowthistle), Verbena sp., Vicia sativa (common vetch), and Xanthium strumarium (noogoora burr). In pathogenicity tests, isolates of D. novem from sunflower were highly virulent when re-inoculated on commercial sunflower varieties. This study has identified D. novem as a frequent cause of stem canker of sunflower in the eastern cropping areas of Australia, and extends the known host range of D. novem.

Keywords

Chickpea Disease Faba bean Lupin Mungbean Pathogenicity Phomopsis Sorghum Soybean Weed diseases 

Notes

Acknowledgements

This work was supported by the Australian Grains Research and Development Corporation under Grants DAQ00154 and DAQ00186 awarded to the Queensland Department of Agriculture and Fisheries, and the University of Southern Queensland. The authors thank Ms. Loretta Serafin (NSW Department of Primary Industries) for assistance with lupin and sunflower samples; Ms. Sara Blake and Ms. Tara Russell (USQ) for technical assistance and Dr. Dean Beasley (Queensland Plant Pathology Herbarium) for advice on specimens.

Sources of funding

This study was funded by the Australian Grains Research and Development Corporation under Grants DAQ00154 and DAQ00186.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. van der Aa, H. A., Noordeloos, M. E., & de Gruyter, J. (1990). Species concepts in some larger genera of the Coelomycetes. Studies in Mycology, 32, 3–19.Google Scholar
  2. Bureau of Meteorology. (2017a). Climate statistics for Australian locations; Macedon forestry. http://www.bom.gov.au/climate/averages/tables/cw_087036.shtml. Accessed 21 November 2017.
  3. Bureau of Meteorology. (2017b). Climate statistics for Australian locations; Moree aero. http://www.bom.gov.au/climate/averages/tables/cw_053115.shtml. Accessed 21 November 2017.
  4. Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.CrossRefGoogle Scholar
  5. Delaye, L., García-Guzmán, G., & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens – Are fungal lifestyles evolutionary traits? Fungal Diversity, 60, 125–135.CrossRefGoogle Scholar
  6. Diaz, G. A., Latorre, B. A., Jara, S., Ferrada, E., Naranjo, P., Rodriguez, J., & Zoffoli, J. P. (2014). First record of Diaporthe novem causing post-harvest rot of kiwifruit during controlled atmosphere storage in Chile. Plant Disease, 98, 1274.CrossRefGoogle Scholar
  7. Dissanayake, A. J., Camporesi, E., Hyde, K. D., Zhang, W., Yan, J. Y., & Li, X. H. (2017). Molecular phylogenetic analysis reveals seven new Diaporthe species from Italy. Mycosphere, 8, 853–877.CrossRefGoogle Scholar
  8. Fernandes, E. G., Pereira, O. L., da Silva, C. C., Bento, C. B. P., & de Queiroz, M. V. (2015). Diversity of endophytic fungi on Glycine max. Microbiological Research, 181, 84–92.CrossRefGoogle Scholar
  9. Gao, Y., Liu, F., & Cai, L. (2016). Unravelling Diaporthe species associated with Camellia. Systematics and Biodiversity, 14, 102–117.Google Scholar
  10. Gao, Y., Liu, F., Duan, W., Crous, P. W., & Cai, L. (2017). Diaporthe is paraphyletic. IMA Fungus, 8, 153–187.CrossRefGoogle Scholar
  11. Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenwald, J. Z., & Crous, P. W. (2013). Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia, 31, 1–41.CrossRefGoogle Scholar
  12. Guarnaccia, V., & Crous, P. W. (2017). Emerging citrus diseases in Europe caused by species of Diaporthe. IMAFungus, 8, 317–334.CrossRefGoogle Scholar
  13. Huang, F., Udayanga, D., Wang, X., Hou, X., Mei, X., Fu, Y., Hyde, K., & Li, H. (2015). Endophytic Diaporthe associated with citrus: A phylogenetic reassessment with seven new species from China. Fungal Biol-UK., 119, 331–347.CrossRefGoogle Scholar
  14. de Hoog, G. S., & Gerrits van den Ende, A. H. (1998). Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses, 41, 183–189.Google Scholar
  15. International Rules for Seed Testing. (2014). ISTA validated method. Annex to Chapter 7. Seed health testing methods. 7–016. Acidified PDA method for detection of Phomopsis Complex on Soybean. https://www.seedtest.org/upload/cms/user/SH-07-016-2014.pdf. Accessed 21 November 2017.
  16. Kulik, M.M., & Sinclair, J.B. (1999). Pod and stem blight. In; compendium of soybean diseases, 4th edition. In G.L. Hartman, J.B. Sinclair & J.C. Rupe (Eds) (pp. 32-33). St. Paul: APS press.Google Scholar
  17. Lawrence, D. P., Travadon, R., & Baumgartner, K. (2015). Diversity of Diaporthe species associated with wood cankers of fruit and nut crops of northern California. Mycologia, 107, 926–940.CrossRefGoogle Scholar
  18. Malcolm, G. M., Kuldau, G. A., Gugino, B. K., & del Mar Jiménez-Gasco, M. (2013). Hidden host plant associations of soilborne fungal pathogens: An ecological perspective. Phytopathology, 103, 538–544.  https://doi.org/10.1094/PHYTO-08-12-0192-LE.CrossRefGoogle Scholar
  19. Masirevic, S., & Gulya, T. J. (1992). Sclerotinia and Phomopsis – Two devastating sunflower pathogens. Field Crops Research, 30, 271–300.CrossRefGoogle Scholar
  20. Mathew, F. M., Alananbeh, K. M., Jordahl, J. G., Myer, S. M., Castlebury, L. A., Gulya, T. J., & Markell, S. G. (2015). Phomopsis stem canker: A reemerging threat to sunflower (Helianthus annuus) in the United States. Phytopathology, 105, 990–997.CrossRefGoogle Scholar
  21. Muntañola-Cvetković, M., Mihaljčević, M., & Petrov, M. (1981). On the identity of the causative agent of a serious Phomopsis-Diaporthe disease in sunflower plants. Nova Hedwigia, 34, 417–435.Google Scholar
  22. Muralli, T. S., Suryanarayanan, T. S., & Geeta, R. (2006). Endophytic Phomopsis species: Host range and implications for diversity estimates. Canadian Journal of Microbiology, 52, 673–680.CrossRefGoogle Scholar
  23. National Climate Centre. (2011a). An extremely wet December leads to widespread flooding across eastern Australia. Special climate statement 24. Melbourne, Vic: Bureau of Meteorology; 15pp.Google Scholar
  24. National Climate Centre. (2011b). Wettest March on record in Australia. Special Climate Statement 31. Melbourne, Vic: Bureau of Meteorology; 11pp.Google Scholar
  25. O’Donnell, K., Kistler, K., Cigelink, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of bananas: Concordant evidence from nuclear and mitochondrial gene genealogies. P Natl Acad Sci USA., 95, 2044–2049.CrossRefGoogle Scholar
  26. Petrović, K.L., Riccioni, M., Vidić, V., Đorđević, S., Balešević-Tubić, V., Dukić, V., & Miladinov, Z. (2016). First records of Diaporthe novem, D. foeniculina and D. rudis associated with soybean seed decay in Serbia. Plant Disease 100, 2324.Google Scholar
  27. Rehner, S. A., & Uecker, F. A. (1994). Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Canadian Journal of Botany, 72, 1666–1674.CrossRefGoogle Scholar
  28. Rekab, D., del Sorbo, G., Reggio, C., Zoina, A., & Firrao, G. (2004). Polymorphisms in nuclear rDNA and mtDNA revela the polyphyletic nature of isolates of Phomopsis pathogenic to sunflower and a tight monophyletic clade of defined origin. Mycological Research, 108, 393–402.CrossRefGoogle Scholar
  29. Santos, J. M., Correia, V. G., & Phillips, A. J. (2010). Primers for mating type diagnosis in Diaporthe and Phomopsis: Their use in teleomorph induction in vitro and biological species definition. Fungal Biology, 114, 255–270.CrossRefGoogle Scholar
  30. Santos, J. M., Vrandečić, K., Ć osić, J., Duvnjak, T., & Phillips, A. J. L. (2011). Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia, 27, 9–19.CrossRefGoogle Scholar
  31. Schneiter, A. A., & Miller, J. F. (1981). Description of sunflower growth stages. Crop Science, 21, 901–903.CrossRefGoogle Scholar
  32. Thompson, S. M., Tan, Y. P., Young, A. J., Neate, S. M., Aitken, E. A. B., & Shivas, R. G. (2011). Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia, 27, 80–89.CrossRefGoogle Scholar
  33. Thompson, S. M., Tan, Y. P., Shivas, R. G., Neate, S. M., Morin, L., Bissett, A., & Aitken, E. A. B. (2015). Green and brown bridges between weeds and crops reveal novel Diaporthe species in Australia. Persoonia, 35, 39–49.CrossRefGoogle Scholar
  34. Thompson, S., Young, A., & Shivas, R. G. (2010). Phomopsis stem canker–an emerging disease of Australian sunflowers. In B. George-Jaeggli & D. J. Jordan (Eds.), Proceedings of the 1st Australian summer grains conference, gold coast, Australia, 21st – 24th June 2010. Barton: Grains Research and Development Corporation.Google Scholar
  35. Udayanga, D., Xingzhong, L., McKenzie, E. H. C., Chukeatirote, E., Bahkali, A. H. A., & Hyde, K. D. (2011). The genus Phomopsis: Biology, applications, species concepts and names of common pathogens. Fungal Diversity, 50, 189–225.CrossRefGoogle Scholar
  36. Uecker, F. A. (1988). A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycologia Memoir, 13, 1–231.Google Scholar
  37. Van Niekerk, J. M., Groenwald, J. Z., Farr, D. F., Fourie, P. H., Halleen, F., & Crous, P. W. (2005). Reassessment of Phomopsis species on grapevine. Australas Plant Path., 34, 27–39.CrossRefGoogle Scholar
  38. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A guide to methods and applications (pp. 315–322). San Diego, USA: Academic Press.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Centre for Crop HealthUniversity of Southern QueenslandToowoombaAustralia
  2. 2.School of Agriculture and Food ScienceUniversity of QueenslandSt LuciaAustralia
  3. 3.Queensland Plant Pathology Herbarium, Department of Agriculture and FisheriesDutton ParkAustralia
  4. 4.New South Wales Department of AgricultureWagga Wagga Agricultural InstituteWagga WaggaAustralia

Personalised recommendations