European Journal of Plant Pathology

, Volume 152, Issue 3, pp 723–733 | Cite as

Baseline sensitivity of Phytophthora capsici to the strobilurin fungicide benzothiostrobin and the efficacy of this fungicide

  • Dicheng Ma
  • Jiamei Zhu
  • Leiming He
  • Kaidi Cui
  • Wei Mu
  • Feng LiuEmail author


Phytophthora capsici Leonian is a destructive oomycete plant pathogen that causes diseases in a wide range of crops worldwide. Benzothiostrobin is a broad-spectrum strobilurin fungicide that may control pepper Phytophthora blight. In the current study, the sensitivities of 90 P. capsici isolates collected from different regions in southern China to benzothiostrobin were measured. The curative and protective effects of benzothiostrobin against pepper Phytophthora blight were also determined. The formation of sporangia was inhibited by lower concentrations of benzothiostrobin, approximately 1 μg mL−1 on V8 media, than was necessary to inhibit zoospore discharge. The frequency distribution curve for the benzothiostrobin sensitivity was unimodal with mean EC50 values of 1.84 ± 0.24, 0.60 ± 0.10 and 4.44 ± 0.27 for inhibiting mycelial growth, sporangia formation and zoospore discharge, respectively. The P. capsici isolates used in this study exhibited decreased sensitivity to several commonly used effective fungicides, including mefenoxam, cyazofamid, fluazinam and propamocarb. Furthermore, benzothiostrobin had no cross-resistance with azoxystrobin, pyraclostrobin or famoxadone. The disease severity of pepper Phytophthora blight on pepper leaves and plants was dramatically reduced by benzothiostrobin application of 150 μg mL−1. Benzothiostrobin provided both curative and protective properties against pepper Phytophthora blight on detached pepper leaves and potted pepper plants, with greater protective activity than curative activity. These results suggested that benzothiostrobin may be used for the management of P. capsici.


Benzothiostrobin Phytophthora capsici Baseline sensitivity Control efficacy 



The National Key Research Development Program of China (2017YFD0201600) has reported this study. We express our thanks to the companies that provided technical-grade fungicide.


This study was funded by the National Key Research Development Program of China (2017YFD0201600).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10658_2018_1514_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22 kb)


  1. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.CrossRefGoogle Scholar
  2. Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: APS Press, American Phytopathological Society.Google Scholar
  3. Fernández-Ortuño, D., Torés, J. A., De, V. A., & Pérez-García, A. (2008). Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. International Microbiology, 11, 1–9.Google Scholar
  4. Gao, L. L., Hu, D. Y., Jin, Y. L., & Huang, R. M. (2008). Toxicities and field tests of a new fungicide Y5247 against Sphaerotheca macularis. Journal of Mountain Agriculture & Biology, 27, 550–553.Google Scholar
  5. Godwin, J. R., Anthony, V. M., Clough, J. M., & Godfrey, C. R. A. (1992). ICIA5504: A novel, broad spectrum, systemic beta-methoxyacrylate fungicide. Pests & Diseases, 1, 435–442.Google Scholar
  6. Granke, L. L., Windstam, S. T., Hoch, H. C., Smart, C. D., & Hausbeck, M. K. (2009). Dispersal and movement mechanisms of Phytophthora capsici sporangia. Phytopathology, 99, 1258–1264.CrossRefGoogle Scholar
  7. Gullino, M. L., Leroux, P., & Smith, C. M. (2000). Uses and challenges of novel compounds for plant disease control. Crop Protection, 19, 1–11.CrossRefGoogle Scholar
  8. Hausbeck, M. K., & Lamour, K. H. (2004). Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Disease, 88, 1292–1303.CrossRefGoogle Scholar
  9. Jang, H. S., Lee, S. M., Sun, B. K., Kim, J., Knight, S., Park, K. D., McKenzie, D., & Kim, H. T. (2009). Baseline sensitivity to mandipropamid among isolates of Phytophthora capsici causing Phytophthora blight on pepper. Plant Pathology Journal, 25, 317–321.CrossRefGoogle Scholar
  10. Jia, J. C., Lin, M. A., Fan, Z. J., Xia, Q., & Liu, X. F. (2008). Progress on study of resistance mechanism of strobilurin fungicides. Chinese Journal of Pesticide Science, 10, 1–9.Google Scholar
  11. Joseph-Horne, T., & Hollomon, D. W. (2000). Functional diversity within the mitochondrial electron transport chain of plant pathogenic fungi. Pest Management Science, 56, 24–30.CrossRefGoogle Scholar
  12. Keinath, A. P. (2007). Sensitivity of populations of Phytophthora capsici from South Carolina to mefenoxam, dimethomorph, zoxamide, and cymoxanil. Plant Disease, 91, 743–748.CrossRefGoogle Scholar
  13. Kim, Y. J., Hwang, B. K., & Park, K. W. (1989). Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Disease, 73, 745–747.CrossRefGoogle Scholar
  14. Lamour, K. H., & Hausbeck, M. K. (2000). Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology, 90, 396–400.CrossRefGoogle Scholar
  15. Lebeda, A., & Cohen, Y. (2011). Cucurbit downy mildew (Pseudoperonospora cubensis)-biology, ecology, epidemiology, host-pathogen interaction and control. European Journal of Plant Pathology, 129, 157–192.CrossRefGoogle Scholar
  16. Leonian, L. H. (1922). Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology, 12, 401–408.Google Scholar
  17. Lu, X. H., Zhu, S. S., Bi, Y., Liu, X. L., & Hao, J. J. (2010). Baseline sensitivity and resistance-risk assessment of Phytophthora capsici to iprovalicarb. Phytopathology, 100, 1162–1168.CrossRefGoogle Scholar
  18. Matheron, M. E., & Porchas, M. (2000a). Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Disease, 84, 454–458.CrossRefGoogle Scholar
  19. Matheron, M. E., & Porchas, M. (2000b). Comparison of five fungicides on development of root, crown, and fruit rot of Chile pepper and recovery of Phytophthora capsici from soil. Plant Disease, 84, 1038–1043.CrossRefGoogle Scholar
  20. Miao, J. Q., Li, X. H., Han, J., & Liu, F. (2011). Comparison of the toxicity of four carboxylic acid amide fungicides against Phytophthora capsici at their three different life stages. Chinese Journal of Pesticide Science, 13, 539–542.Google Scholar
  21. Miao, J. Q., Dong, X., Lin, D., Wang, Q. S., Liu, P. F., Chen, F. R., Du, Y. X., & Liu, X. L. (2015). Activity of the novel fungicide oxathiapiprolin against plant-pathogenic oomycetes. Pest Management Science, 72, 1572–1577.CrossRefGoogle Scholar
  22. Parra, G., & Ristaino, J. B. (2001). Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Disease, 85, 1069–1075.CrossRefGoogle Scholar
  23. Qian, Z. H., Chen, C. J., Wang, J. X., & Zhou, M. G. (2006). Baseline sensitivity of different morpha of Phytophthora capsici Leonian to azoxystrobin. Acta Phytopathologica Sinica, 36, 322–327.Google Scholar
  24. Rebollar-Alviter, A., Madden, L. V., Jeffers, S. N., & Ellis, M. A. (2007). Baseline and differential sensitivity to two QoI fungicides among isolates of Phytophthora cactorum that cause leather rot and crown rot on strawberry. Plant Disease, 91, 1625–1637.CrossRefGoogle Scholar
  25. Ristaino, J. B., & Johnston, S. A. (1999). Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Disease, 83, 1080–1089.CrossRefGoogle Scholar
  26. Ristaino, J. B., Larkin, R. P., & Campbell, C. L. (1994). Spatial dynamics of disease symptom expression during Phytophthora epidemics in bell pepper. Phytopathology, 84, 1015–1024.CrossRefGoogle Scholar
  27. Russel, P. E. (2004). Sensitivity baselines in fungicide resistance research and management. FRAC Monograph No. 3, FRAC, Brussels, Belgium. Accessed 8 Mar 2014.
  28. Tamura, H., Mizutani, A., Yukioka, H., Miki, N., Ohba, K., & Masuko, M. (1999). Effect of the methoxyiminoacetamide fungicide, SSF129, on respiratory activity in Botrytis cinerea. Pesticide Science, 55, 681–686.CrossRefGoogle Scholar
  29. Wang, Y. K., & Huang, R. M. (2008). Plot effect test of Y5247 for controlling cucumber powdery mildew. Journal of Mountain Agriculture & Biology, 27, 180–182.Google Scholar
  30. Wang, J. Q., Xu, W. Y., Zhu, Q. L., & Gang, W. U. (2006). Control efficacy of 56% cupric hydroxide dimethomorph WP against Phytophthora blight in pepper plants. Subtropical Agriculture Research, 1, 37–40.Google Scholar
  31. Xu, C. Y., Hou, Y., Wang, J., Chen, C., & Zhou, M. I. (2014a). Fungicidal activity and biological characteristics of benzothiostrobin, a novel QoI fungicide. Chinese Journal of Pesticide Science, 16, 667–672.Google Scholar
  32. Xu, C. Y., Hou, Y. P., Wang, J. X., Yang, G. F., Liang, X. Y., & Zhou, M. G. (2014b). Activity of a novel strobilurin fungicide benzothiostrobin against Sclerotinia sclerotiorum. Pesticide Biochemistry & Physiology, 115, 32–38.CrossRefGoogle Scholar
  33. Yang, B., Cui, X. L., Lu, X. H., Cai, M., Liu, X. L., & Hao, J. J. (2011). Baseline sensitivity of natural population and resistance of mutants in Phytophthora capsici to zoxamide. Phytopathology, 101, 1104–1111.CrossRefGoogle Scholar
  34. Zhang, G. (2003). Current status of application, development and prospect of strobin fungicides. Pesticide Science & Administration, 12, 30–34.Google Scholar
  35. Zhao, W. S., Han, X. Y., Wang, W. Q., & Zhang, X. F. (2010). Advance on fungicides resistance of Phytophthora capsici. Agrochemicals, 49, 86–89.Google Scholar
  36. Zhou, Y. X., Chen, L., Hu, J., Liu, P. F., Zhang, Y., Meng, Q. X., Li, B., Si, N. G., Liu, C. L., & Liu, X. L. (2016a). Baseline sensitivity of natural population and resistance risk of Peronophythora litchii to four novel QoI fungicides. European Journal of Plant Pathology, 146, 71–83.CrossRefGoogle Scholar
  37. Zhou, Y. X., Yang, Y. B., Zhang, Y., Li, B., Si, N. G., Liu, C. L., & Liu, X. L. (2016b). Sensitivity of Peronophythora litchii at different development stages to four QoI fungicides. Chinese Journal of Pesticide Science, 18, 57–64.Google Scholar
  38. Ziogas, B. N., Baldwin, B. C., & Young, J. E. (1997). Alternative respiration: A biochemical mechanism of resistance to azoxystrobin (ICIA 5504) in Septoria tritici. Pesticide Science, 50, 28–34.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Dicheng Ma
    • 1
  • Jiamei Zhu
    • 1
  • Leiming He
    • 1
  • Kaidi Cui
    • 1
  • Wei Mu
    • 1
  • Feng Liu
    • 1
    Email author
  1. 1.College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect PestsShandong Agricultural UniversityTai’anPeople’s Republic of China

Personalised recommendations