European Journal of Plant Pathology

, Volume 152, Issue 3, pp 613–619 | Cite as

Bioassays on the role of tomato, potato and sweet pepper as sources of Tomato chlorosis virus transmitted by Bemisia tabaci MEAM1

  • T. MitutiEmail author
  • J. P. Edwards Molina
  • J. A. M. Rezende


Tomato chlorosis virus, transmitted by Bemisia tabaci MEAM1 in a semipersistent manner, is widely spread in solanaceous producing region in Brazil, as tomato (Solanum lycopersicum), potato (S. tuberosum) and sweet pepper (Capsicum annuum). The interactions between tomato, potato and sweet pepper in the virus acquisition and transmission processes by the vector were studied. ToCV-infected potato and tomato plants were used as sources of inoculum for the vector, which subsequently transmitted the virus to tomato, potato, and sweet pepper plants in choice tests of inoculated species. For no choice tests, having tomato as the source of inoculum, ToCV transmission rates for tomato, potato and sweet pepper were 53.3%, 50%, and 16.6%, respectively. When ToCV-infected potato was the source of inoculum, the transmission rates for tomato, potato and sweet pepper were 30%, 46.6 and 3.3%, respectively. In the trials with free-choice and ToCV-infected tomato as the source of inoculum, virus transmission rates for tomato, potato and sweet pepper were 50%, 35 and 0%, respectively. With ToCV-infected potato as source of inoculum, transmission rates were 25%, 10 and 0% for tomato, potato and sweet pepper, respectively. When viruliferous insects were used in trials with free-choice for the vector, transmission rates were 40%, 45 and 0% for tomato, potato and sweet pepper, respectively. Based on statistical analysis using the logistic regression model, tomato was the best source of inoculum, while sweet pepper was the least susceptible to infection and less preferred by whiteflies than the other Solanaceae species.


Crinivirus Solanaceae Epidemiology Disease management 



This study was supported by Fundação de Amparo à Pesquisa no Estado de São Paulo (FAPESP), Projects No. 2012/51771-4 and 2014/15114-4.

Compliance with ethical standards

Human and animal rights

This article does not contain any studies with human participants or animal performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest.


  1. Ballina-Gomez, H., Ruiz-Sanchez, E., Chan-Cupu, W., Latournerie-Moreno, L., Hernández-Alvarado, L., Islas-Flores, I., & Zuñiga-Aguilar, J. J. (2013). Response of Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) Biotype B to Genotypes of Pepper Capsicum annuum (Solanales: Solanaceae). Neotropical Entomology, 42, 205–210.CrossRefGoogle Scholar
  2. Barbosa, J. C., Teixeira, A. P. M., Moreira, A. G., Camargo, L. E. A., Bergamin Filho, A., Kitajima, E. W., & Rezende, J. A. M. (2008). First report of Tomato chlorosis virus infecting tomato crops in Brazil. Plant Disease, 92, 1709.CrossRefGoogle Scholar
  3. Barbosa, J. C., Teixeira, L. D. D., & Rezende, J. A. M. (2010). First report on the susceptibility of sweet pepper crops to in Brazil. Plant Disease, 94, 374.CrossRefGoogle Scholar
  4. Barbosa, J. C., Costa, H., Gioria, R., & Rezende, J. A. M. (2011). Ocurrence of Tomato Chlorosis virus in tomato crops in five Brazilian states. Tropical Plant Phatology, 36, 256–258.Google Scholar
  5. Barreto, S. S., Hallwass, M., Aquino, O. M., & Inoue-Nagata, A. K. (2013). A study of weeds as potential inoculum sources for a tomato-infecting begomovirus in Central Brazil. Phytopathology, 103, 436–444.CrossRefGoogle Scholar
  6. Boiteux, L. S., Lima, M. F., Fonseca, M. E. N., Mendonça, J. L., Costa, A. F., Silva, J. G., Fontes, M. G., & Gonzáles-Arcos, M. (2018). Identification of eight Solanum (subgenus Leptostemonum) species as novel natural hosts of Tomato chlorosis virus in Brazil. Plant Disease.
  7. Calaça, H. A. (2011). Temporal and spatial dynamics of the viral disease caused by Tomato chlorosis virus (ToCV) in tomato. Biblioteca Digital, Escola Superior de Agricultura Luiz de Queiroz. Dissertation. University of São Paulo. Accessed 25 October 2017.
  8. De Barro, P. J., Scott, K. D., Graham, G. C., Lange, C., & Schutze, M. K. (2003). Isolation and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecology Notes, 3, 40–43.CrossRefGoogle Scholar
  9. De Bokx, J. A. & Huttinga, H. (1981). Potato virus Y. CMI/AAB Descriptions of Plant Viruses, 242). Kew, UK: Commonwealth Microbiology Institute and Association of Applied Biology.Google Scholar
  10. Dinoor, A. (1974). Role of wild and cultivated plants in the epidemiology of plant diseases in Israel. Annual Review of Phytopathology, 12, 413–436.CrossRefGoogle Scholar
  11. Dovas, C. I., Katias, N. I., & Avgelis, A. D. (2002). Multiplex detection of criniviruses associated with epidemics of yellowing disease of tomato in Greece. Plant Disease, 86, 1345–1349.CrossRefGoogle Scholar
  12. Duffus, J. E. (1971). Role of weeds in the incidence of virus diseases. Annual Review of Phytopathology, 9, 319–340.CrossRefGoogle Scholar
  13. Fariña, A. E. (2016). Identification of alternative hosts of Tomato chlorosis virus. Biblioteca Digital, Escola Superior de Agricultura Luiz de Queiroz. Accessed 18 August 2017.
  14. Fiallo-Olivé, E., Espino, A. I., Botella-Guillén, M., Gómez-González, E., Reyes-Carlos, J. A., & Navas-Castillo, J. (2014). Tobacco: a new natural host of Tomato chlorosis virus in Spain. Plant Disease, 98, 1162.CrossRefGoogle Scholar
  15. Fonseca, M. E. N., Boiteux, L. S., Abreu, H., Nogueira, I., & Pereira-Carvalho, R. C. (2013). Physalis angulata: a new natural host of Tomato chlorosis virus in Brazil. Plant Disease, 97, 692.CrossRefGoogle Scholar
  16. Freitas, D. M. S., Nardin, I., Shimoyama, N., Souza Dias, J. A. C., & Rezende, J. A. M. (2012). First report of Tomato chlorosis virus in potato in Brazil. Plant Disease, 96, 593.CrossRefGoogle Scholar
  17. García-Cano, E., Navas-Castillo, J., Moriones, E., & Fernández-Muñoz, R. (2010). Resistance to Tomato chlorosis virus in wild tomato species that impair virus accumulation and disease symptom expression. Phytopathology, 100, 582–592.CrossRefGoogle Scholar
  18. Green, K. J., Chikh-Ali, M., Hamasaki, R. T., Melzer, M. J., & Karasev, A. V. (2017). Potato virus Y (PVY) Iiolates from Physalis peruviana are unable to systemically infect potato or pepper and form a distinct new lineage within the PVYc strain group. Phytopathology, 107, 1433–1439.CrossRefGoogle Scholar
  19. Inoue-Nagata, A. K., Carvalho, C. M., Zerbini, F. M., Rezende, J. A. M., Sakate, R. K., & Nagata, T. (2016). Vírus transmitidos por moscas-brancas no Brasil: vetores, principais doenças e manejo. Revisão Anual de Patologia de Plantas, 24, 7–29.Google Scholar
  20. Ito, D., Miller, Z., Menalled, F., Moffet, M., & Burrows, M. (2012). Relative susceptibility among alternative host species prevalent in the great Plains to Wheat streak mosaic virus. Plant Disease, 96, 1185–1192.CrossRefGoogle Scholar
  21. Karasev, A. V., & Gray, S. M. (2013). Continuous and emerged challenges of Potato virus Y in potato. Annual Review of Phytopathology, 51, 571–586.CrossRefGoogle Scholar
  22. Khan, M. R., Ghani, I. A., Khan, M. R., Ghaffar, A., & Tamkeen, A. (2011). Host plant selection and oviposition behaviour of whitefly Bemisia tabaci (Gennadius) in a mono and simulated polyculture crop habitat. African Journal of Biotechnology, 10(8), 1467–1472.Google Scholar
  23. Kil, E., Ye-Ji Lee, Y., Cho, S., Auh, C., Kim, D., Lee, K., Kim, M., Choi, H., & Kim, C. (2015). Identification of natural weed hosts of Tomato chlorosis virus in Korea by RT-PCR with root tissues. European Journal of Plant Pathology, 142, 419–426.CrossRefGoogle Scholar
  24. Landeo-Ríos, Y. M., Navas-Castillo, J., Moriones, E., & Cañizares, M. C. (2015). Genetic diversity and silencing suppression activity of the p22 protein of Tomato chlorosis virus isolates from tomato and sweet pepper. Virus Genes, 51(2), 283–289.CrossRefGoogle Scholar
  25. Liu, H. Y., Wisler, G. C., & Duffus, J. E. (2000). Particle lengths of whitefly-transmitted criniviruses. Plant Disease, 84, 803–805.CrossRefGoogle Scholar
  26. Lorenzo, M. E., Grille, G., Basso, C., & Bonato, O. (2016). Host preferences and biotic potential of Trialeurodes vaporariorum and Bemisia tabaci (Hemiptera: Aleyrodidae) in tomato and pepper. Arthropod-Plant Interactions, 10, 293–301.CrossRefGoogle Scholar
  27. Lourenção, A. L., Alves, A. C., Fugi, C. G. Q., & Matos, E. S. (2008). Outbreaks of Trialeurodes vaporariorum (West.) (Hemiptera: Aleyrodidae) under field conditions in the State of São Paulo, Brazil. Neotropical Entomology, 37, 89–91.CrossRefGoogle Scholar
  28. Macedo, M. A. (2016). Temporal and spatial progress of begomovirus and crinivirus in tomatoes. Repositório Institucional da Universidade de Brasília. Accessed 10 July 2017.
  29. Mansilla-Córdova, P. J., Bampi, D., Rondinel-Mendoza, N. V., Melo, P. C. T., Lourenção, A. L., & Rezende, J. A. M. (2017). Screening tomato genotypes for resistance and tolerance to Tomato chlorosis virus. Plant Pathology.
  30. Medina, V., Rodrigo, G., Tian, T., Juarez, M., Dolja, V. V., Achon, M. A., & Falkm, B. W. (2003). Comparative cytopathology of Crinivirus infections in different plant hosts. Annals of Applied Biology, 143, 99–110.CrossRefGoogle Scholar
  31. Morilla, G., Janssen, D., García-Andrés, S., Moriones, E., Cuadrado, I. M., & Bejarano, E. R. (2005). Pepper (Capsicum annuum) is a dead-end host for Tomato yellow leaf curl virus. Phytopathology, 95, 1089–1097.CrossRefGoogle Scholar
  32. Morris, J., Steel, E., Smith, P., Boonham, N., Spence, N., & Barker, I. (2006). Host range studies of Tomato chlorosis virus, and Cucumber vein yellowing virus transmiteed by Bemisia tabaci (Gennadius). European Journal of Plant Pathology, 114, 265–273.CrossRefGoogle Scholar
  33. Navas-Castillo, J., Camero, R., Bueno, M., & Moriones, E. (2000). Severe yellowing outbreaks in tomato in Spain associated with infections of Tomato chlorosis virus. Plant Disease, 84, 835–837.CrossRefGoogle Scholar
  34. Orfanidou, C., Pappi, P. G., Efthimiou, K. E., Katis, N., & Maliogka, V. (2016). Transmission of Tomato chlorosis virus (ΤοCV) by Bemisia tabaci biotype Q and evaluation of four weed species as viral sources. Plant Disease, 100, 2043–2049.CrossRefGoogle Scholar
  35. Polston, J. E., Cohen, L., Sherwood, T. A., Ben-Joseph, R., & Lapidot, M. (2006). Capsicum species: symptomless hosts and reservoirs of Tomato yellow leaf curl virus. Virology, 96(5), 447–452.Google Scholar
  36. R Core Team. (2017). R: A language and environment for statistical computing. R foundation for Statistical Computing. Accessed 05 January 2018.
  37. Sharma, M., & Budha, P. B. (2015). Host preference vegetables of tobacco whitefly Bemisia tabaci (Gennadius, 1889) in Nepal. Journal of Institute of Science and Technology, 20, 133–137.CrossRefGoogle Scholar
  38. Tsai, W. S., Shin, S. L., Green, S. K., Hanson, P., & Liu, H. Y. (2004). First report of the occurrence of Tomato chlorosis virus and Tomato infectious chlorosis virus in Taiwan. Plant Disease, 88, 311.CrossRefGoogle Scholar
  39. Tzanetakis, I. E., Martin, R. R., & Wintermantel, W. M. (2013). Epidemiology of criniviruses: an emerging problem in world agriculture. Frontiers in Microbiology, 4, 1–15.CrossRefGoogle Scholar
  40. Wintermantel, W. M., & Wisler, G. C. (2006). Vector specificity, host range, and genetic diversity of Tomato chlorosis virus. Plant Disease, 90, 814–819.CrossRefGoogle Scholar
  41. Wisler, G. C., Li, R. H., Liu, H. Y., Lowry, D. S., & Duffus, J. E. (1998). Tomato chlorosis virus: A new whitefly-transmitted, phloem-limited, bipartite closterovirus of tomato. Phytopathology, 88, 402–409.CrossRefGoogle Scholar
  42. Zhou, Y., Yan, J. Y., Qiao, G. H., Liu, M., Zhang, W., & Li, X. H. (2015). First Report of Tomato chlorosis virus Infecting Eggplant (Solanum melongena) in China. Plant Disease, 99, 1657–1657.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Department of Plant Pathology and NematologyUniversity of São PauloPiracicabaBrazil

Personalised recommendations