Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality

  • Ayat F. HashimEmail author
  • Khamis Youssef
  • Kamel A. Abd-Elsalam


Biodegradable antifungal nanomaterials are a recent novel measure against plant pathogens. In the present investigation, the synthesis and characterization of some ecofriendly nanomaterials, including silica, chitosan, and copper nanoparticles (NPs) and their combination, were carried out. Their fungicidal activity was studied in vitro and in vivo against Botrytis cinerea, the causal agent of gray mold on table grapes. In addition, the effect of those nanomaterials on physical and chemical properties of grape (TSS, TA, TSS/TA ratio and berries colour) were evaluated. Scanning electron microscopy (SEM) and analysis of DNA-binding profile were used to better understand their mechanism of action. SEM showed that chitosan and silica NPs caused inhibition of hyphal growth and/or alteration of hyphal morphology such as cell wall disruption, withering, and excessive septation. NPs interacted with DNA isolated from fungal mats: the highest concentration of chitosan and silica NPs affected DNA integrity and led to a significant degradation. A single application of chitosan or silica NPs at veraison stage was able to reduce gray mold of table grapes. Although further large scale trials are needed, the promising results of this research suggest nanomaterials compounds, i.e. silica and chitosan NPs, as effective antifungal agents for the control of gray mold of table grapes.


Nanomaterials Gray mold Grape quality Scanning electron microscope Postharvest 



This research was supported by the International Foundation for Science, Stockholm, Sweden, through a grant to Ms. Ayat F. Hashim (F5853).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. The manuscript was prepared under compliance with ethical standards.

Animal studies and human participants

This article does not contain any studies with human participants or animal performed by any of the authors.


  1. Abd-Elsalam, K. A., Vasil’kov, Y. A., Said-Galiev, E. E., Rubina, M. S., Khokhlov, A. R., Naumkin, A. V., Shtykova, E. V., & Alghuthaymi, M. A. (2018). Bimetallic blends and chitosan nanocomposites: Novel antifungal agents against cotton seedling damping-off. European Journal of Plant Pathology, 151, 57–72.Google Scholar
  2. Abourida, M., & Harb, F. (2014). Synthesis and characterization of amorphous silica Nanoparitcles from aqueous silicates using cationic surfactants. Journal of Metals, Materials and Minerals, 24, 37–42.Google Scholar
  3. Ahmad, M. B., Lim, J. J., Tay, M. Y., Shameli, K., & Ibrahim, N. A. (2011). Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterizations. Molecules, 16, 7237–7248.CrossRefGoogle Scholar
  4. Ahmed, A. I. S. (2017). Chitosan and silver nanoparticles as control agents of some Faba bean spot diseases. Journal of Plant Pathology and Microbiology, 8, 421.Google Scholar
  5. Baek, S.-H., Kim, B., & Suh, K.-D. (2008). Chitosan particle/multiwall carbon nanotube composites by electrostatic interactions. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 316, 292–296.CrossRefGoogle Scholar
  6. Barnett, H. L., & Hunter, B. B. (1986). Illustrated genera of imperfect Fungi (4th ed.). New York: Macmillan Publishing Co. 218 pp.Google Scholar
  7. Bernardos, A., Marina, T., Žáˇcek, P., Pérez-Esteve, É., Martínez-Máñez, R., Lhotka, M., Kouřimská, L., Pulkrábek, J., & Klouček, P. (2015). Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95, 2824–2831.CrossRefGoogle Scholar
  8. Bowen, P., Menzies, J., Ehret, D., Samuels, L., & Glass, A. D. M. (1992). Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science, 117, 906–912.Google Scholar
  9. Carreño, J., & Martinez, A. (1995). Proposal of an index for the objective evaluation of the colour of red table grapes. Food Research International, 28, 373–377.CrossRefGoogle Scholar
  10. Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2, 015009.Google Scholar
  11. Dann, E. K., & Muir, S. (2002). Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1,3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australasian Plant Pathology, 31, 9–13.CrossRefGoogle Scholar
  12. Dinh, S.-Q., Joyce, D. C., Irving, D. E., & Wearing, A. H. (2007). Field applications of three different classes of known host plant defence elicitors did not suppress Botrytis cinerea infecting Geraldton waxflower. Australasian Plant Pathology, 36, 142–148.CrossRefGoogle Scholar
  13. Dinh, S.-Q., Joyce, D. C., Irving, D. E., & Wearing, A. H. (2008). Effects of multiple applications of chemical elicitors on Botrytis cinerea infecting Geraldton waxflower. Australasian Plant Pathology, 37, 87–94.CrossRefGoogle Scholar
  14. Divya, K., Vijayan, S., Tijith, K. G., & Jisha, M. S. (2017). Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers and Polymers, 18(2), 221–230.CrossRefGoogle Scholar
  15. El Ghaouth, A., Arul, J., & Benhamou, N. (1992). Antifungal activity of chitosan on post-harvest pathogens. Induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research, 96(9), 769–779.CrossRefGoogle Scholar
  16. He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215.CrossRefGoogle Scholar
  17. Hernández-Lauzardo, A., Velázquez, M., & Guerra-Sánchez, M. (2011). Current status of action mode and effect of chitosan against phytopathogens fungi. African Journal of Microbiology Research, 5, 4243–4247.Google Scholar
  18. Jacometti, M. A., Wratten, S. D., & Walter, M. (2010). Review: Alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Australian Journal of Grape and Wine Research, 16, 154–172.CrossRefGoogle Scholar
  19. Joselito, D., & Soytong, K. (2014). Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. Journal of Agricultural Technology, 10(4), 823–831.Google Scholar
  20. Kaur, M., Kalia, A., & Thakur, A. (2017). Effect of biodegradable chitosan–rice-starch nanocomposite films on post-harvest quality of stored peach fruit. Starch, 69, 1600208.CrossRefGoogle Scholar
  21. Li, L. H., Deng, J. C., Deng, H. R., Liu, Z. L., & Li, X. L. (2010). Preparation, characterization and antimicrobial activities of chitosan/ag/ZnO blend films. Chemical Engineering Journal, 160, 378–382.CrossRefGoogle Scholar
  22. Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z., & Yao, K. D. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79, 1324–1335.CrossRefGoogle Scholar
  23. Liu, H. Y., Du, X., & Wang, L. S. (2004). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95, 147–155.CrossRefGoogle Scholar
  24. Menzies, J., Bowen, P., Ehret, D., & Glass, A. D. M. (1992). Foliar application of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. Journal of the American Society for Horticultural Science, 117, 902–905.Google Scholar
  25. Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015). Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal growth for controlling Botrytis cinerea, the causal agent of gray mould disease. Innovative Food Science & Emerging Technologies, 14, 78–84.Google Scholar
  26. Moslem, M. A., Abd-Elsalam, K. A., Bahkali, A. H., & Yassin, M. A. (2010). First morpho-molecular identification of Penicillium griseofulvum and P. aurantiogriseum toxicogenic isolates associated with blue mold on apple. Foodborne Pathogens and Disease, 7, 857–861.CrossRefGoogle Scholar
  27. Mott, D., Galkowski, J., Wang, L. Y., Luo, J., & Zhong, C. J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23, 5740–5745.CrossRefGoogle Scholar
  28. Moussa, S. H., Tayel, A. A., Alsohim, A. S., & Abdallah, R. R. (2013). Botryticidal growth of Nanosized silver–chitosan composite and its application for the control of gray Mold in strawberry. Journal of Food Science, 78, 1589–1594.CrossRefGoogle Scholar
  29. Muzzarelli, R. A. (2011). Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review. Carbohydrate Polymers, 84, 54–63.CrossRefGoogle Scholar
  30. Nair, R. & Kumar, D.S. (2013). Plant Diseases—Control and Remedy Through Nanotechnology. pp. 231–244. Book Crop Improvement Under Adverse Conditions Edited by Narendra Tuteja and Sarvajeet Singh Gill.Google Scholar
  31. Nemati, A., Shadpour, S., Khalafbeygi, H., Ashraf, S., Barkhi, M., & Soudi, R. M. (2015). Efficiency of hydrothermal synthesis of nano/micro sized copper and study on in vitro antifungal activity. Materials and Manufacturing Processes, 30(1), 63–69.CrossRefGoogle Scholar
  32. Pichyangkura, R., & Chatchawan, S. (2015). Bio stimulant activity of chitosan in horticulture. Scientia Horticulturae, 195, 49–65.CrossRefGoogle Scholar
  33. Rabea, E. I., & Steurbaut, W. (2010). Chemically modified chitosans as antimicrobial agents against some plant pathogenic bacteria and fungi. Plant Protection Science, 4, 149–158.CrossRefGoogle Scholar
  34. Reglinski, T., Elmer, P. A. G., Taylor, J. T., Wood, P. N., & Hoyte, S. M. (2010). Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathology, 59, 882–890.CrossRefGoogle Scholar
  35. Rossi, L. M., Shi, L. F., Quina, F. H., & Rosenzweig, Z. (2005). Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays. Langmuir, 21, 4277–4280.CrossRefGoogle Scholar
  36. Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., Raliya, R., & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346–353.CrossRefGoogle Scholar
  37. Salahuddin, N., Elbarbary, A., Allam, N., & Hashim, A. F. (2018). Chitosan modified with 1,3,4-oxa(thia)diazole derivatives with high efficacy to heal burn infection by Staphylococcus aureus. Journal of Bioactive and Compatible Polymers, 3(3), 254–268.CrossRefGoogle Scholar
  38. Sanford, P. A. (2003). Commercial sources of chitin and chitosan and their utilization. In K. M. Varum, A. Domard, & O. SmidsrØd (Eds.), Advances in chitin science (Vol. 6, pp. 35–42). Trondheim: NTNU.Google Scholar
  39. Soytong, K., Charoenporn, C., & Kanokmedhakul, S. (2013). Evaluation of microbial elicitors to induce plant immunity for tomato wilt. African Journal of Microbiology Research, 7(19), 1993–2000.CrossRefGoogle Scholar
  40. Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of mono disperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26, 62–69.CrossRefGoogle Scholar
  41. Suhartono, D. (2015). Preparation of chitosan material and its antifungal activity for bamboo. International Journal of Science and Research, 6, 1586–1590.Google Scholar
  42. Suriyaprabha, R., Karunakaran, G., Kavitha, K., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2014). Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnology, 8(3), 133–137.CrossRefGoogle Scholar
  43. Usman, M. S., El Zowalaty, M. E., Shameli, K., Zainuddin, N., Salama, M., & Ibrahim, N. A. (2013). Synthesis, characterization, and antimicrobial properties of copper nanoparticles. International Journal of Nanomedicine, 18, 4467–4479.Google Scholar
  44. Xu, L., Cao, L., Li, F., Wang, X., & Huang, Q. (2014). Utilization of chitosan–lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. Journal of Dispersion Science and Technology, 35, 544–550.CrossRefGoogle Scholar
  45. Xue, J., Luo, Z., Li, P., Ding, Y., Cui, Y., & Wu, Q. (2014). A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Scientific Reports, 4, 5408.CrossRefGoogle Scholar
  46. Youssef, K., & Roberto, S. R. (2014a). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biology and Technology, 87, 95–102.CrossRefGoogle Scholar
  47. Youssef, K., & Roberto, S. R. (2014b). Salt strategies to control Botrytis mold of 'Benitaka' table grapes and to maintain fruit quality during storage. Postharvest Biology and Technology, 95, 95–102.CrossRefGoogle Scholar
  48. Youssef, K., Ligorio, A., Sanzani, S. M., Nigro, F., & Ippolito, A. (2012). Control of storage diseases of citrus by pre- and postharvest application of salts. Postharvest Biology and Technology, 72, 57–63.CrossRefGoogle Scholar
  49. Youssef, K., Hashim, A. F., Margarita, R., Alghuthaymi, M. A., & Abd-Elsalam, K. A. (2017). Antifungal efficacy of chemically-produced copper nanoparticles against Penicillium digitatum and Fusarium solani on Citrus fruit. The Philippine Agricultural Scientist, 100(1), 69–78.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Ayat F. Hashim
    • 1
    Email author
  • Khamis Youssef
    • 2
  • Kamel A. Abd-Elsalam
    • 2
  1. 1.Food Industries and Nutrition DivisionNational Research CentreGizaEgypt
  2. 2.Plant Pathology Research InstituteAgricultural Research CenterGizaEgypt

Personalised recommendations