Advertisement

Plant trichomes as microbial habitats and infection sites

  • Ki Woo Kim
Article

Abstract

Trichomes, also simply referred to as hairs, are fine outgrowths of epidermal cells in many organisms including plants and bacteria. Plant trichomes have long been known for their multiple beneficial roles, ranging from protection against insect herbivores and ultraviolet light to the reduction of transpiration. However, there is increasing evidence that the presence of trichomes may have detrimental consequences for plants. For example, plant pathogenic bacteria can enter hosts through the open bases or broken stalks of damaged trichomes. Similarly, trichomes are considered a preferred site for fungal infection, and in this regard, the colonization and penetration of trichomes by fungi and oomycetes have been visualized using light, fluorescence, and scanning electron microscopy in a variety of plants from grasses to shrubs and trees. In addition to parasitic interactions, trichomes also form a host site for endophytic relationships with fungi, thereby serving as an unusual fungal niche. The replication and presence of plant viruses in trichomes have also been confirmed after inoculation. In contrast, the well-known beneficial AzollaAnabaena symbiosis is facilitated through epidermal trichomes of the seedless vascular plant Azolla. These observations indicate that plant trichomes are involved in multiple interactions in terms of providing microbial habitats and infection sites as well as functioning as protective structures. Trichome-related microbial parasitism and endophytism can, in many ways, be considered comparable to those associated with root hairs.

Keywords

Epidermis Infection Niche Trichome 

Notes

Acknowledgments

This study was supported by Kyungpook National University Bokhyeon Research Fund, 2016.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Study of human participants and animals

This study does not contain any studies with human participants or animals.

References

  1. Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145–180.CrossRefGoogle Scholar
  2. Angell, S. M., & Baulcombe, D. C. (1995). Cell-to-cell movement of potato virus X revealed by micro-injection of a viral vector tagged with the ß-glucuronidase gene. The Plant Journal, 7, 135–140.CrossRefGoogle Scholar
  3. Bailey, B. A., Strem, M. D., & Wood, D. (2009). Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycological Research, 113, 1365–1376.CrossRefGoogle Scholar
  4. Bang, C., & Schmitz, R. A. (2018). Archaea: forgotten players in the microbiome. Emerging Topics in Life Sciences, ETLS20180035.Google Scholar
  5. Beattie, G. A., & Lindow, S. E. (1995). The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology, 33, 145–172.CrossRefGoogle Scholar
  6. Bogs, J., Bruchmüller, I., Erbar, C., & Geider, K. (1998). Colonization of host plants by the fire blight pathogen Erwinia amylovora marked with genes for bioluminescence and fluorescence. Phytopathology, 88, 416–421.CrossRefGoogle Scholar
  7. Calo, L., Garcia, I., Gotor, C., & Romero, L. C. (2006). Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a Trichoderma α-1,3-glucanase. Journal of Experimental Botany, 57, 3911–3920.CrossRefGoogle Scholar
  8. Calvert, H. E., Pence, M. K., & Peters, G. A. (1985). Ultrastructural ontogeny of leaf cavity trichomes in Azolla implies a functional role in metabolite exchange. Protoplasma, 129, 10–27.CrossRefGoogle Scholar
  9. Cantrell, S. A., Dianese, J. C., Fell, J., Gunde-Cimerman, N., & Zalar, P. (2011). Unusual fungal niches. Mycologia, 103, 1161–1174.CrossRefGoogle Scholar
  10. Chalupowicz, L., Barash, I., Reuven, M., Dror, O., Sharabani, G., Gartemann, K.-H., Eichenlaub, R., Sessa, G., & Manulis-Sasson, S. (2017). Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. Molecular Plant Pathology, 18, 336–346.CrossRefGoogle Scholar
  11. Danovaro, R., Canals, M., Tangherlini, M., Dell’Anno, A., Gambi, C., Lastras, G., … Corinaldesi, C. (2017). A submarine volcanic eruption leads to a novel microbial habitat. Nature Ecology & Evolution, 1, 144.Google Scholar
  12. Dornelo-Silva, D., & Dianese, J. C. (2004). New hyphomycete genera on Qualea species from the Brazilian cerrado. Mycologia, 96, 879–884.CrossRefGoogle Scholar
  13. Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen-host-environment interplay and disease emergence. Emerging Infectious Diseases, 2, e5.Google Scholar
  14. Ensikat, H.-J., Geisler, T., & Weigend, M. (2016). A first report of hydroxylated apatite as structural biomineral in Loasacease-plant’s teeth against herbivores. Scientific Reports, 6, 26073.CrossRefGoogle Scholar
  15. Fortunati, E., & Balestra, G. M. (2018). Overview of novel and sustainable antimicrobial nanomaterials for agri-food applications. Nanomedicine And Nanotechnology Journal, 2, 115.Google Scholar
  16. Getz, S., Fulbright, D. W., & Stephens, C. T. (1983). Scanning electron microscopy of infection sites and lesion development on tomato fruit infected with Pseudomonas syringae pv. tomatao. Phytopathology, 73, 39–43.CrossRefGoogle Scholar
  17. Hamaya, E. (1982). Trichome infection of the tea anthracnose fungus Gloeosporium theae-sinensis. Japan Agricultural Research Quarterly, 16, 114–118.Google Scholar
  18. Hampton, J. G., Kabeere, F., & Hill, M. J. (1997). Transmission of Fusarium graminearum (Schwabe) from maize seeds to seedlings. Seed Science and Technology, 25, 245–252.Google Scholar
  19. Huang, J.-S. (1986). Ultrastructure of bacterial penetration in plants. Annual Review of Phytopathology, 24, 141–157.CrossRefGoogle Scholar
  20. Hülskamp, M. (2004). Plant trichomes: a model for cell differentiation. Nature Reviews. Molecular Cell Biology, 5, 471–480.CrossRefGoogle Scholar
  21. Imboden, L., Afton, D., & Trail, F. (2018). Surface interactions of Fusarium graminearum on barley. Molecular Plant Pathology, 19, 1332–1342.CrossRefGoogle Scholar
  22. Ivanoff, S. S. (1961). Injuries on cantaloupe leaves associated with laminal guttation away from marginal hydathodes. Phytopathology, 51, 584–585.Google Scholar
  23. Jones, J. H. (1986). Evolution of the Fagaceae: the implications of foliar features. Annals of the Missouri Botanical Garden, 73, 228–275.CrossRefGoogle Scholar
  24. Karamanoli, K., Thalassinos, G., Karpouzas, D., Bosabalidis, A. M., Vokou, D., & Constantinidou, H.-I. (2012). Are leaf glandular trichomes of oregano hospitable habitats for bacterial growth? Journal of Chemical Ecology, 38, 476–485.CrossRefGoogle Scholar
  25. Kim, K. W. (2013). Ambient variable pressure field emission scanning electron microscopy for trichome profiling of Plectranthus tomentosa by secondary electron imaging. Applied Microscopy, 42, 194–199.CrossRefGoogle Scholar
  26. Kim, K. W. (2018). Peltate trichomes on biogenic silvery leaves of Elaeagnus umbellata. Microscopy Research and Technique, 81, 789–795.CrossRefGoogle Scholar
  27. Kim, S. H., Kantzes, J. G., & Weaver, L. O. (1974). Infection of aboveground parts of bean by Pythium aphanidermatum. Phytopathology, 64, 373–380.CrossRefGoogle Scholar
  28. Kim, K. W., Park, E. W., & Ahn, K.-K. (1999). Pre-penetration behavior of Botryosphaeria dothidea on apple fruits. Plant Pathology Journal, 15, 223–227.Google Scholar
  29. Koga, H. (1995). An electron microscopic study of the infection of spikelets of rice by Pyricularia oryzae. Journal of Phytopathology, 143, 439–445.CrossRefGoogle Scholar
  30. Kogovšek, P., Kladnik, A., Mlakar, J., Žnidarič, M. T., Dermastia, M., Ravnikar, M., & Pompe-Novak, M. (2011). Distribution of Potato virus Y in potato plant organs, tissues, and cells. Phytopathology, 101, 1292–1300.CrossRefGoogle Scholar
  31. Kontaxis, D. G., & Schlegel, D. E. (1962). Basal septa of broken trichomes in Nicotiana as possible infection sites for Tobacco Mosaic Virus. Virology, 16, 244–247.CrossRefGoogle Scholar
  32. Layne, R. E. C. (1967). Foliar trichomes and their importance as infection sites for Corynebacterium michiganense on tomato. Phytopathology, 57, 981–985.Google Scholar
  33. Łaźniewska, J., Macioszek, V. K., & Kononowicz, A. K. (2012). Plant-fungus interface: the role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology, 78, 24–30.CrossRefGoogle Scholar
  34. Leben, C., & Daft, G. C. (1964). Characteristics of bacteria isolated from leaves of cucumber seedlings. Canadian Journal of Microbiology, 10, 919–923.CrossRefGoogle Scholar
  35. Lindsey, B. I., & Pugh, G. J. F. (1976). Distribution of microfungi over the surfaces of attached leaves of Hippophaë rhamnoides. Transactions of the British Mycological Society, 67, 427–433.CrossRefGoogle Scholar
  36. Liu, P., Xue, S., He, R., Hu, J., Wang, X., Jia, B., Gallipoli, L., Balestra, G. M., & Zhu, L. (2016). Pseudomonas syringae pv. actinidiae isolated from non-kiwifruit plant species in China. European Journal of Plant Pathology, 145, 743–754.CrossRefGoogle Scholar
  37. Ma, Z.-Y., Wen, J., Ickert-Bond, S. M., Chen, L.-Q., & Liu, X.-Q. (2016). Morphology, structure, and ontogeny of trichomes of the grape genus (Vitis, Vitaceae). Frontiers in Plant Science, 7, 704.Google Scholar
  38. Mansvelt, E. L., & Hattingh, M. J. (1987). Scanning electron microscopy of colonization of pear leaves by Pseudomonas syringae pv. syringae. Canadian Journal of Botany, 65, 2517–2522.CrossRefGoogle Scholar
  39. Mansvelt, E. L., & Hattingh, M. J. (1989). Scanning electron microscopy of invasion of apple leaves and blossoms by Pseudomonas syringae pv. syringae. Applied and Environmental Microbiology, 55, 533–538.Google Scholar
  40. Marinho, C. R., Oliveira, R. B., & Teixeira, S. P. (2016). The uncommon cavitated secretory trichomes in Bauhinia s.s. (Fabaceae): the same roles in different organs. Botanical Journal of the Linnean Society, 180, 104–122.CrossRefGoogle Scholar
  41. Moissl-Eichinger, C., Pausan, M., Taffner, J., Berg, G., Bang, C., & Schmitz, R. A. (2018). Archaea are interactive components of complex microbiomes. Trends in Microbiology, 26, 70–85.CrossRefGoogle Scholar
  42. Nguyen, T. T. X., Dehne, H.-W., & Steiner, U. (2016). Maize leaf trichomes represent an entry point of infection for Fusarium species. Fungal Biology, 120, 895–903.CrossRefGoogle Scholar
  43. Nishino, M., Fukui, M., & Nakajima, T. (1998). Dense mats of Thioploca, gliding filamentous sulfur-oxidizing bacteria in Lake Biwa, Central Japan. Water Research, 32, 953–957.CrossRefGoogle Scholar
  44. Pereira-Carvalho, R. C., Sepúlveda-Chavera, Armando, E. A. S., Inácio, C. A., & Dianese, J. C. (2009). An overlooked source of fungal diversity: novel hyphomycete genera on trichomes of cerrado plants. Mycological Research, 113, 261–274.CrossRefGoogle Scholar
  45. Perkins, S. K., & Peters, G. A. (1993). The Azolla-Anabaena symbiosis: endophyte continuity in the Azolla life-cycle is facilitated by epidermal trichomes. I. Partitioning of the endophytic Ananaena into developing sporocarps. The New Phytologist, 123, 53–64.CrossRefGoogle Scholar
  46. Petkar, A., & Ji, P. (2017). Infection courts in watermelon plants leading to seed infestation by Fusarium oxysporum f. sp. niveum. Phytopathology, 107, 828–833.CrossRefGoogle Scholar
  47. Pietrarelli, L., Balestra, G. M., & Varvaro, L. (2006). Effects of simulated rain on Pseudomonas syringae pv. tomato populations on tomato plants. Journal of Plant Pathology, 88, 245–251.Google Scholar
  48. Reisberg, E. E., Hildebrandt, U., Riederer, M., & Hentschel, U. (2012). Phyllosphere bacterial communities of trichome-bearing and trichomeless Arabidopsis thaliana leaves. Antonie van Leeuwenhoek, 101, 551–560.CrossRefGoogle Scholar
  49. Renzi, M., Copini, P., Taddei, A. R., Rossetti, A., Gallipoli, L., Mazzaglia, A., & Balestra, G. M. (2012). Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Phytopathology, 102, 827–840.CrossRefGoogle Scholar
  50. Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145, 39–51.CrossRefGoogle Scholar
  51. Schönherr, J. (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany, 57, 2471–2491.CrossRefGoogle Scholar
  52. Schneider, R. W., & Grogan, R. G. (1977). Tomato leaf trichomes, a habitat for resident populations of Pseudomonas tomato. Phytopathology, 67, 898–902.CrossRefGoogle Scholar
  53. Skadsen, R. W., & Hohn, T. M. (2004). Use of Fusarium graminearum transformed with gfp to follow infection patterns in barley and Arabidopsis. Physiological and Molecular Plant Pathology, 64, 45–53.CrossRefGoogle Scholar
  54. Taffner, J., Erlacher, A., Bragina, A., Berg, C., Moissl-Eichinger, C., & Berg, G. (2018). What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. mSphere, 3, e00122–e00118.CrossRefGoogle Scholar
  55. Tucker, S. C., Rugenstein, S. R., & Derstine, K. (1984). Inflated trichomes in flowers of Bauhinia (Leguminosae: Caesalpinioideae). Botanical Journal of the Linnean Society, 88, 291–301.Google Scholar
  56. Vacher, C., Hampe, A., Porté, A. J., Sauer, U., Compant, S., & Morris, C. E. (2016). The phyllosphere: microbial jungle at the plant-climate interface. Annual Review of Ecology, Evolution, and Systematics, 47, 1–24.CrossRefGoogle Scholar
  57. Van de Graaf, P., Joseph, M. E., Chartier-Hollis, J. M., & O’Neill, T. M. (2002). Prepenetration stages in infection of clematis by Phoma clematidina. Plant Pathology, 51, 331–337.CrossRefGoogle Scholar
  58. Wagner, G. J. (1991). Secreting glandular trichomes: more than just hairs. Plant Physiology, 96, 675–679.CrossRefGoogle Scholar
  59. Wagner, G. J., Wang, E., & Shepherd, R. W. (2004). New approaches for studying and exploiting an old protuberance, the plant trichome. Annals of Botany, 93, 3–11.CrossRefGoogle Scholar
  60. Waigmann, E., Turner, A., Peart, J., Roberts, K., & Zambryski, P. (1997). Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta, 203, 75–84.CrossRefGoogle Scholar
  61. Warner, C. A., Biedrzycki, M. L., Jacobs, S. S., Wisser, R. J., Caplan, J. L., & Sherrier, D. J. (2014). An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiology, 166, 1684–1687.CrossRefGoogle Scholar
  62. Werker, E. (2000). Trichome diversity and development. Advances in Botanical Research, 31, 1–35.CrossRefGoogle Scholar
  63. Yamada, K., & Sonoda, R. (2014). A fluorescence microscopic study of the infection process of Discula theae-sinensis in tea. Japan Agricultural Research Quarterly, 48, 399–402.CrossRefGoogle Scholar
  64. Yu, T., Qi, Y., Gong, H., Luo, Q., & Zhu, D. (2018). Optical clearing for multiscale biological tissues. Journal of Biophotonics, 11, e201700187.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.School of Ecology and Environmental SystemKyungpook National UniversitySangjuSouth Korea
  2. 2.Tree Diagnostic CenterKyungpook National UniversitySangjuSouth Korea

Personalised recommendations