Developing a methodology for identifying brown rot resistance in stone fruit

  • Núria Baró-Montel
  • Rosario Torres
  • Carla Casals
  • Neus Teixidó
  • Joan Segarra
  • Josep UsallEmail author


Assays were conducted to understand the effect of various factors involved with screening for resistance to Monilinia fructicola in stone fruit. First, the effect of maturity heterogeneity was determined in a set of fruit graded into three apparent maturity classes according to the IAD index for measurements taken with a DA-Meter. Second, different conidia concentrations, incubation times and M. fructicola strains were evaluated to optimize the methodology. Furthermore, the effects of fruit disinfection on M. fructicola, Penicillium expansum and Rhizopus stolonifer growth were studied. Finally, the developed methodology was applied to a set of commercial varieties of stone fruit to determine its suitability for identifying the level of susceptibility to brown rot. The results obtained indicated significant differences between wounded and non-wounded fruit, inoculum concentration and incubation time. The effect of strain aggressiveness was also confirmed, whereas, in general, no significant differences were observed among the fruit collected at the same harvest date. Our results also show that disinfection of fruit prior to inoculation had an effect on the infection process. In addition, the use of this methodology in commercial varieties of stone fruit allowed distinctions to be made among the levels of susceptibility to brown rot. Hence, the developed methodology could be applied to resistance screening in breeding programmes, as well as studying the genetic basis of brown rot resistance.


Monilinia fructicola Prunus persica Disease resistance Peach Nectarine 



Authors are grateful to the Spanish Government for their financial support by national projects AGL2014-55287-C02-02-R and AGL2017-84389-C2-1-R from Ministry of Economy, Industry and Competitiveness (MINECO), to the Catalan Government (Generalitat de Catalunya) for the PhD grant 2016FI_B 00442 (Baró-Montel, N.) and for the funding received from CERCA Programme / Generalitat de Catalunya.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This study does not include any trial with human and/or animals.

Informed consent

Informed consent was obtained from all of the individual participants included in the study.


  1. Bernat, M., Segarra, J., Xu, X.-M., Casals, C., & Usall, J. (2017). Influence of temperature on decay, mycelium development and sporodochia production caused by Monilinia fructicola and M. laxa on stone fruits. Food Microbiology, 64, 112–118.CrossRefGoogle Scholar
  2. Bostock, R. M., Wilcox, S. M., Wang, G., & Adaskaveg, J. E. (1999). Suppression of Monilinia fructicola cutinase production by peach fruit surface phenolic acids. Physiological and Molecular Plant Pathology, 54, 37–50.CrossRefGoogle Scholar
  3. Bussi, C., Plenet, D., Merlin, F., Guillermin, A., & Mercier, V. (2015). Limiting brown rot incidence in peach with tree training and pruning. Fruits, 70, 303–309.CrossRefGoogle Scholar
  4. Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169–196.CrossRefGoogle Scholar
  5. Daane, K. M., Johnson, R. S., Michailides, T. J., Crisosto, C. H., Dlott, J. W., Ramirez, H. T., Yokota, G. Y., & Morgan, D. P. (1995). Excess nitrogen raises nectarine susceptibility to disease and insects. California Agriculture, 49, 13–18.CrossRefGoogle Scholar
  6. De Cal, A., Gell, I., Usall, J., Viñas, I., & Melgarejo, P. (2009). First report of brown rot caused by Monilinia fructicola in peach orchards in Ebro Valley, Spain. Plant Disease, 93, 763.CrossRefGoogle Scholar
  7. Di Franceso, A., Cameldi, I., & Mari, M. (2017). New strategies to control brown rot caused by Monilinia spp. of stone fruit. Agriculturae Conspectus Scientificus, 81, 131–135.Google Scholar
  8. Donoso, J. M., Eduardo, I., Picañol, R., Batlle, I., Howard, W., Aranzana, M. J., & Arús, P. (2015). High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies. Horticulture Research, 2, 15016.CrossRefGoogle Scholar
  9. Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 4–11.Google Scholar
  10. Drogoudi, P., Pantelidis, G. E., Goulas, V., Manganaris, G. A., Ziogas, V., & Manganaris, A. (2016). The appraisal of qualitative parameters and antioxidant contents during postharvest peach fruit ripening underlines the genotype significance. Postharvest Biology and Technology, 115, 142–150.CrossRefGoogle Scholar
  11. Egüen, B., Melgarejo, P., & De Cal, A. (2015). Sensitivity of Monilinia fructicola from Spanish peach orchards to thiophanate-methyl, iprodione, and cyproconazole: Fitness analysis and competitiveness. European Journal of Plant Pathology, 141, 789–801.CrossRefGoogle Scholar
  12. Feliciano, A., Feliciano, A. J., & Ogawa, J. M. (1987). Monilinia fructicola resistance in the peach cultivar Bolinha. Phytopathology, 77, 776–780.CrossRefGoogle Scholar
  13. Feliziani, E., Lichter, A., Smilanick, J. L., & Ippolito, A. (2016). Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biology and Technology, 122, 53–69.CrossRefGoogle Scholar
  14. Fourie, J. F., & Holz, G. (1985). Artificial inoculation of stone fruit with Botrytis cinerea, Monilinia laxa and Rhizopus stolonifer. Phytophylactica, 17, 179–181.Google Scholar
  15. Garcia-Benitez, C., Melgarejo, P., De Cal, A., & Fontaniella, B. (2016). Microscopic analyses of latent and visible Monilinia fructicola infections in nectarines. PLoS One, 11, 1–16.CrossRefGoogle Scholar
  16. Garcia-Benitez, C., Melgarejo, P., & De Cal, A. (2017). Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches. International Journal of Food Microbiology, 241, 117–122.CrossRefGoogle Scholar
  17. Giné-Bordonaba, J., Cantín, C. M., Echeverría, G., Ubach, D., & Larrigaudière, C. (2016). The effect of chilling injury-inducing storage conditions on quality and consumer acceptance of different Prunus persica cultivars. Postharvest Biology and Technology, 115, 38–47.CrossRefGoogle Scholar
  18. Gotor-Vila, A., Usall, J., Torres, R., Solsona, C., & Teixidó, N. (2017). Biocontrol products based on Bacillus amyloliquefaciens CPA-8 using fluid-bed spray-drying process to control postharvest brown rot in stone fruit. LWT - Food Science and Technology, 82, 274–282.CrossRefGoogle Scholar
  19. Gradziel, T. M. (1994). Changes in susceptibility to brown rot with ripening in three clingstone peach genotypes. Journal of the American Society for Horticultural Science, 119, 101–105.Google Scholar
  20. Gradziel, T. M., & Wang, D. (1993). Evaluation of brown rot resistance and its relation to enzymatic browning in clingstone peach germplasm. Journal of the American Society for Horticultural Science, 118, 675–679.Google Scholar
  21. Gradziel, T. M., Bostock, R. M., & Adaskaveg, J. E. (2003). Resistance to brown rot disease in peach is determined by multiple structural and biochemical components. Acta Horticulturae, 622, 347–352.Google Scholar
  22. Hong, C., Michailides, T. J., & Holtz, B. A. (1998). Effects of wounding, inoculum density, and biological control agents on postharvest brown rot of stone fruits. Plant Disease, 82, 1210–1216.CrossRefGoogle Scholar
  23. Janisiewicz, W. J., Biggs, A. R., Jurick, W. M., II, Vico, I., & Conway, W. S. (2013). Biological characteristics of Monilinia fructicola isolates from stone fruits in eastern West Virginia. Canadian Journal of Plant Pathology, 35, 315–327.CrossRefGoogle Scholar
  24. Kappel, F., & Sholberg, P. L. (2008). Screening sweet cherry cultivars from the Pacific Agri-food research Centre Summerland breeding program for resistance to brown rot (Monilinia fructicola). Canadian Journal of Plant Pathology, 88, 747–752.Google Scholar
  25. Konstantinou, S., Karaoglanidis, G. S., Bardas, G. A., Minas, I. S., Doukas, E., & Markoglou, A. N. (2011). Postharvest fruit rots of apple in Greece: Pathogen incidence and relationships between fruit quality parameters, cultivar susceptibility, and patulin production. Plant Disease, 95, 666–672.CrossRefGoogle Scholar
  26. Kreidl, S., Edwards, J., & Villalta, O. N. (2015). Assessment of pathogenicity and infection requirements of Monilinia species causing brown rot of stone fruit in Australian orchards. Australasian Plant Pathology, 44, 419–430.CrossRefGoogle Scholar
  27. Lee, M.-H., & Bostock, R. M. (2007). Fruit exocarp phenols in relation to quiescence and development of Monilinia fructicola infections in Prunus spp.: A role for cellular redox? Phytopathology, 97, 269–277.CrossRefGoogle Scholar
  28. Manganaris, G. A., Drogoudi, P., Goulas, V., Tanou, G., Georgiadou, E. C., Pantelidis, G. E., Paschalidis, K. A., Fotopoulos, V., & Manganaris, A. (2017). Deciphering the interplay among genotype, maturity stage and low-temperature storage on phytochemical composition and transcript levels of enzymatic antioxidants in Prunus persica fruit. Plant Physiology and Biochemistry, 119, 189–199.CrossRefGoogle Scholar
  29. Martínez-García, P. J., Parfitt, D. E., Bostock, R. M., Fresnedo-Ramírez, J., Vazquez-Lobo, A., Ogundiwin, E. A., Gradziel, T. M., & Crisosto, C. H. (2013). Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PLoS One, 8, 1–12.Google Scholar
  30. Mercier, V., Bussi, C., Plenet, D., & Lescourret, F. (2008). Effects of limiting irrigation and of manual pruning on brown rot incidence in peach. Crop Protection, 27, 678–688.CrossRefGoogle Scholar
  31. Naets, M., van Dael, M., Vanstreels, E., Daelemans, D., Verboven, P., Nicolaï, B., Keulemans, W., & Geeraerd, A. (2018). To disinfect or not to disinfect in postharvest research on the fungal decay of apple? International Journal of Food Microbiology, 266, 190–199.CrossRefGoogle Scholar
  32. Norelli, J. L., Wisniewski, M., Fazio, G., Burchard, E., Gutierrez, B., Levin, E., & Droby, S. (2017). Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii. PLoS One, 12, 1–24.CrossRefGoogle Scholar
  33. Northover, J., & Biggs, A. R. (1995). Effect of conidial concentration of Monilinia fructicola on brown rot development in detached cherries. Canadian Journal of Plant Pathology, 17, 205–214.CrossRefGoogle Scholar
  34. Obi, V. I., Barriuso, J. J., Moreno, M. A., Giménez, R., & Gogorcena, Y. (2017). Optimizing protocols to evaluate brown rot (Monilinia laxa) susceptibility in peach and nectarine fruits. Australasian Plant Pathology, 46, 183–189.CrossRefGoogle Scholar
  35. Oliveira Lino, L., Pacheco, I., Mercier, V., Faoro, F., Bassi, D., Bornard, I., & Quilot-Turion, B. (2016). Brown rot strikes Prunus fruit: An ancient fight almost always lost. Journal of Agricultural and Food Chemistry, 64, 4029–4047.CrossRefGoogle Scholar
  36. Pacheco, I., Bassi, D., Eduardo, I., Ciacciulli, A., Pirona, R., Rossini, L., & Vecchietti, A. (2014). QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genetics & Genomes, 10, 1223–1242.CrossRefGoogle Scholar
  37. Palou, L., Smilanick, J. L., Crisosto, C. H., Mansour, M., & Plaza, P. (2003). Ozone gas penetration and control of the sporulation of Penicillium digitatum and Penicillium italicum within commercial packages of oranges during cold storage. Crop Protection, 22, 1131–1134.CrossRefGoogle Scholar
  38. Papavasileiou, A., Testempasis, S., Michailides, J., & Karaoglanidis, G. S. (2015). Frequency of brown rot fungi on blossoms and fruit in stone fruit orchards in Greece. Plant Pathology, 64, 416–424.CrossRefGoogle Scholar
  39. Pariaud, B., Ravigné, V., Halkett, F., Goyeau, H., Carlier, J., & Lannou, C. (2009). Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathology, 58, 409–424.CrossRefGoogle Scholar
  40. Pascal, T., Levigneron, A., Kervella, J., & Nguyen-The, C. (1994). Evaluation of two screening methods for resistance of apricot, plum and peach to Monilinia laxa. Euphytica, 77, 19–23.CrossRefGoogle Scholar
  41. Rungjindamai, N., Jeffries, P., & Xu, X. M. (2014). Epidemiology and management of brown rot on stone fruit caused by Monilinia laxa. European Journal of Plant Pathology, 140, 1–17.CrossRefGoogle Scholar
  42. Scariotto, S., dos Santos, J., & Raseira, M. C. B. (2015). Search for resistance sources to brown rot in Brazilian peach genotypes. In VIIIth Intl. Peach Symposium. Acta Horticulturae, 1084, 211–216.CrossRefGoogle Scholar
  43. Sisquella, M., Casals, C., Viñas, I., Teixidó, N., & Usall, J. (2013). Combination of peracetic acid and hot water treatment to control postharvest brown rot on peaches and nectarines. Postharvest Biology and Technology, 83, 1–8.Google Scholar
  44. Spadoni, A., Cameldi, I., Noferini, M., Bonora, E., Costa, G., & Mari, M. (2016). An innovative use of DA-meter for peach fruit postharvest management. Scientia Horticulturae, 201, 140–144.CrossRefGoogle Scholar
  45. Spotts, R. A., & Peters, B. B. (1980). Chlorine and chlorine dioxide for control of d’Anjou pear decay. Plant Disease, 64, 1095–1097.CrossRefGoogle Scholar
  46. Tian, S., Torres, R., Ballester, A. R., Li, B., Vilanova, L., & González-Candelas, L. (2016). Molecular aspects in pathogen-fruit interactions: Virulence and resistance. Postharvest Biology and Technology, 122, 11–21.CrossRefGoogle Scholar
  47. Usall, J., Casals, C., Sisquella, M., Palou, L., & De Cal, A. (2015). Alternative technologies to control postharvest diseases of stone fruits. Stewart Postharvest Review, 11, 1–6.Google Scholar
  48. Usall, J., Ippolito, A., Sisquella, M., & Neri, F. (2016). Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122, 30–40.CrossRefGoogle Scholar
  49. Valleau, W. D. (1915). Varietal resistance of plums to brown-rot. Journal of Agricultural Research, 5, 365–396.Google Scholar
  50. Vilanova, L., Teixidó, N., Torres, R., Usall, J., Viñas, I., & Sánchez-Torres, P. (2016). Relevance of the transcription factor PdSte12 in Penicillium digitatum conidiation and virulence during citrus fruit infection. International Journal of Food Microbiology, 235, 93–102.CrossRefGoogle Scholar
  51. Villarino, M., Sandín-España, P., Melgarejo, P., & De Cal, A. (2011). High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis. Journal of Agricultural and Food Chemistry, 59, 3205–3213.CrossRefGoogle Scholar
  52. Villarino, M., Egüen, B., Lamarca, N., Segarra, J., Usall, J., Melgarejo, P., & De Cal, A. (2013). Occurrence of Monilinia laxa and M. fructigena after introduction of M. fructicola in peach orchards in Spain. European Journal of Plant Pathology, 137, 835–845.CrossRefGoogle Scholar
  53. Walter, M., McLaren, G. F., Fraser, J. A., Frampton, C. M., Boyd-Wilson, K. S. H., & Perry, J. H. (2004). Methods of screening apricot fruit for resistance to brown rot caused by Monilinia spp. Australasian Plant Pathology, 33, 541–547.CrossRefGoogle Scholar
  54. Xu, X. M., Bertone, C., & Berrie, A. (2007). Effects of wounding, fruit age and wetness duration on the development of cherry brown rot in the UK. Plant Pathology, 56, 114–119.Google Scholar
  55. Ziosi, V., Noferini, M., Fiori, G., Tadiello, A., Trainotti, L., Casadoro, G., & Costa, G. (2008). A new index based on Vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biology and Technology, 49, 319–329.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.IRTA, XaRTA-Postharvest, Edifici FruitcentreParc Científic i Tecnològic Agroalimentari de LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations