Advertisement

Genetic diversity of Curtobacterium flaccumfaciens revealed by multilocus sequence analysis

  • R. M. Gonçalves
  • M. I. Balbi-Peña
  • J. M. Soman
  • A. C. Maringoni
  • G. Taghouti
  • M. Fischer-Le Saux
  • P. PortierEmail author
Article
  • 74 Downloads

Abstract

Bacterial wilt caused by Curtobacterium flaccumfaciens pv. flaccumfaciens is among the diseases that affect Phaseolus vulgaris L. This disease has been frequently detected in bean fields and causes severe production losses in Brazil. The aim of this research was to examine the genetic diversity existing among twenty-four isolates of C. flaccumfaciens collected from their native and alternative host, and a collection of sixty strains belonging to four phytopathogenic pathovars preserved at the French Collection for Plant-associated Bacteria (CIRM-CFBP) by multilocus sequence analysis (MLSA) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA and rpoB). A phylogenetic tree with the concatenated sequences of six genes showed high genetic diversity among the strains. For instance, strains belonging to C. f. pv. flaccumfaciens do not cluster together within the species. Similar results were obtained with a minimal MLSA scheme using gyrB and recA, which we propose for reliable identification at the species level of Curtobacterium isolates. No correlation was identified between phylogeny and pathogenicity in the Curtobacterium flaccumfaciens strains analyzed in this work. The specific primers CffFOR2 and CffREV4 designed by Tegli et al. (Letters in Applied Microbiology, 35(4), 331–337, 2002) to detect C. f. pv. flaccumfaciens in naturally infected bean seeds proved to be efficient for the detection of bean-pathogenic strains.

Keywords

gyrB MLSA Phylogeny recA Curtobacterium 

Notes

Acknowledgments

The authors would like to thank CAPES (Coordination for the Improvement of Higher Education Personnel-Brazil) for financial support and Cécile Dutrieux, Karine Durand, and Armelle Darrasse for technical assistance and thoughtful discussions. The authors thank the reviewers of the first version of this paper for their very helpful comments, and Jason Shiller for the text review.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2018_1648_MOESM1_ESM.docx (144 kb)
Supplemental Figure 1 (DOCX 144 kb)
10658_2018_1648_MOESM2_ESM.docx (329 kb)
Supplemental Figure 2 (DOCX 328 kb)
10658_2018_1648_MOESM3_ESM.xlsx (14 kb)
Supplemental Table 1 (XLSX 14 kb)

References

  1. Agarkova, I. V., Lambrecht, P. A., Vidaver, A. K., & Harveson, R. M. (2012). Genetic diversity among Curtobacterium flaccumfaciens pv. flaccumfaciens populations in the American High Plains. Canadian Journal of Microbiology, 58(6), 788–801.  https://doi.org/10.1139/w2012-052.CrossRefGoogle Scholar
  2. Bishop, C. J., Aanensen, D. M., Jordan, G. E., Kilian, M., Hanage, W. P., & Spratt, B. G. (2009). Assigning strains to bacterial species via the internet. BMC Biology, 7(1), 3.  https://doi.org/10.1186/1741-7007-7-3.CrossRefGoogle Scholar
  3. Chen, Y. F., Guo, J. H., & Fang, Z. D. (2000). A new pathovar of Curtobacterium flaccumfaciens on Malabar spinach. Acta Phytopathologica Sinica, 30, 171–175.Google Scholar
  4. Chen, Y.-F., Yin, Y.-N., Zhang, X.-M., & Guo, J.-H. (2007). Curtobacterium flaccumfaciens pv. beticola , a new pathovar of pathogens in sugar beet. Plant Disease, 91(6), 677–684.  https://doi.org/10.1094/PDIS-91-6-0677.CrossRefGoogle Scholar
  5. Collins, M. D., & Jones, D. (1983). Reclassification of Corynebacterium flaccumfaciens, Corynebacterium betae, Corynebacterium oortii and Corynebacterium poinsettiae in the genus Curtobacterium, as Curtobacterium flaccumfaciens comb. nov. Microbiology, 129(11), 3545–3548.  https://doi.org/10.1099/00221287-129-11-3545.CrossRefGoogle Scholar
  6. Darsonval, A., Darrasse, A., Durand, K., Bureau, C., Cesbron, S., & Jacques, M.-A. (2009). Adhesion and fitness in the bean phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. Molecular Plant-Microbe Interactions, 22(6), 747–757.  https://doi.org/10.1094/MPMI-22-6-0747.CrossRefGoogle Scholar
  7. de Souza, V. L., Maringoni, A. C., & Krause-Sakate, R. (2006). Genetic variability in Curtobacterium flaccumfaciens isolates. Summa Phytopathologica, 32(2), 170–176.  https://doi.org/10.1590/S0100-54052006000200012.CrossRefGoogle Scholar
  8. Dow, J. M., Clarke, B. R., Milligan, D. E., Tang, J. L., & Daniels, M. J. (1990). Extracellular proteases from Xanthomonas campestris pv. campestris, the black rot pathogen. Applied and Environmental Microbiology, 56(10), 2994–2998.Google Scholar
  9. Fischer-Le Saux, M., Bonneau, S., Essakhi, S., Manceau, C., & Jacques, M.-A. (2015). Aggressive emerging pathovars of Xanthomonas arboricola represent widespread epidemic clones distinct from poorly pathogenic strains, as revealed by multilocus sequence typing. Applied and Environmental Microbiology, 81(14), 4651–4668.  https://doi.org/10.1128/AEM.00050-15.CrossRefGoogle Scholar
  10. Gonçalves, R. M., Schipanski, C. A., Koguishi, L., Soman, J. M., Sakate, R. K., Júnior, T. A. F. S., & Maringoni, A. C. (2017). Alternative hosts of Curtobacterium flaccumfaciens pv. flaccumfaciens, causal agent of bean bacterial wilt. European Journal of Plant Pathology, 148(2), 357–365.  https://doi.org/10.1007/s10658-016-1094-4.CrossRefGoogle Scholar
  11. Guimarães, P. M., Smith, J. J., Palmano, S., & Saddler, G. S. (2003). Characterisation of Curtobacterium flaccumfaciens pathovars by AFLP, rep-PCR and pulsed-field gel electrophoresis. European Journal of Plant Pathology, 109(8), 817–825.  https://doi.org/10.1023/A:1026197914417.CrossRefGoogle Scholar
  12. Hajri, A., Pothier, J. F., Fischer-Le Saux, M., Bonneau, S., Poussier, S., Boureau, T., et al. (2012). Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic Xanthomonas arboricola. Applied and Environmental Microbiology, 78(2), 371–384.  https://doi.org/10.1128/AEM.06119-11.CrossRefGoogle Scholar
  13. Hedges, F. (1922). A bacterial wilt of the bean caused by Bacterium flaccumfaciens nov. sp. Science, 55(1425), 433–434.  https://doi.org/10.1126/science.55.1425.433.CrossRefGoogle Scholar
  14. Hedges, F. (1926). Bacterial wilt of beans (Bacterium flaccumfaciens Hedges), including comparisons with Bacterium phaseoli. Phytopathology, 16(1), 1–22.Google Scholar
  15. Herbes, D. H., Theodoro, G. F., Maringoni, A. C., dal Piva, C. A., & de Abreu, L. (2008). Detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in seeds of common bean produced in Santa Catarina. Tropical Plant Pathology, 33(2), 153–156.  https://doi.org/10.1590/S1982-56762008000200010.CrossRefGoogle Scholar
  16. Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267.Google Scholar
  17. Jacques, M. A., Durand, K., Orgeur, G., Balidas, S., Fricot, C., Bonneau, S., Quillévéré, A., Audusseau, C., Olivier, V., Grimault, V., & Mathis, R. (2012). Phylogenetic analysis and polyphasic characterization of Clavibacter michiganensis strains isolated from tomato seeds reveal that nonpathogenic strains are distinct from C. michiganensis subsp. michiganensis. Applied and Environmental Microbiology, 78(23), 8388–8402.  https://doi.org/10.1128/AEM.02158-12.CrossRefGoogle Scholar
  18. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen, K., Li, S., Yang, H., Wang, J., & Wang, J. (2010). De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 20(2), 265–272.  https://doi.org/10.1101/gr.097261.109.CrossRefGoogle Scholar
  19. Maringoni, A. C. (2002). Behaviour of dry bean cultivars to bacterial wilt. Fitopatologia Brasileira, 27(2), 157–162.  https://doi.org/10.1590/S0100-41582002000200006.CrossRefGoogle Scholar
  20. Maringoni, A. C., & Rosa, E. F. (1997). Occurrence of Curtobacterium flaccumfaciens pv. flaccumfaciens on bean in the state of Sao Paulo, Brazil. Summa Phytopathologica (Brazil), 23, 160–162.Google Scholar
  21. Merda, D., Briand, M., Bosis, E., Rousseau, C., Portier, P., Barret, M., Jacques, M. A., & Fischer-le Saux, M. (2017). Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Molecular Ecology, 26(21), 5939–5952.  https://doi.org/10.1111/mec.14343.CrossRefGoogle Scholar
  22. Osdaghi, E., Taghavi, S. M., Hamzehzarghani, H., Fazliarab, A., Harveson, R. M., & Lamichhane, J. R. (2016). Occurrence and characterization of a new red-pigmented variant of Curtobacterium flaccumfaciens, the causal agent of bacterial wilt of edible dry beans in Iran. European Journal of Plant Pathology, 146(1), 129–145.  https://doi.org/10.1007/s10658-016-0900-3.CrossRefGoogle Scholar
  23. Osdaghi, E., Taghavi, S. M., Hamzehzarghani, H., Fazliarab, A., Harveson, R. M., Tegli, S., & Lamichhane, J. R. (2018a). Epiphytic Curtobacterium flaccumfaciens strains isolated from symptomless solanaceous vegetables are pathogenic on leguminous but not on solanaceous plants. Plant Pathology, 67, 388–398.  https://doi.org/10.1111/ppa.12730.CrossRefGoogle Scholar
  24. Osdaghi, E., Taghavi, S. M., Calamai, S., Biancalani, C., Cerboneschi, M., Tegli, S., & Harveson, R. (2018b). Phenotypic and molecular-phylogenetic analysis provide novel insights into the diversity of Curtobacterium flaccumfaciens. Phytopathology, 108, 1154–1164.CrossRefGoogle Scholar
  25. Sallet, E., Gouzy, J., & Schiex, T. (2014). EuGene-PP: A next-generation automated annotation pipeline for prokaryotic genomes. Bioinformatics, 30(18), 2659–2661.  https://doi.org/10.1093/bioinformatics/btu366.CrossRefGoogle Scholar
  26. Sammer, U. F., & Reiher, K. (2012). Curtobacterium flaccumfaciens pv. flaccumfaciens on soybean in Germany - a threat for farming. Journal of Phytopathology, 160(6), 314–316.  https://doi.org/10.1111/j.1439-0434.2012.01902.x.CrossRefGoogle Scholar
  27. Schwartz, H. F., Steadman, J. R., Hall, R., & Forster, R. L. (2005). Compendium of bean diseases. St. Paul: APS Press American Phytopathological Society.Google Scholar
  28. Tancos, M. A., Lange, H. W., & Smart, C. D. (2015). Characterizing the genetic diversity of the Clavibacter michiganensis subsp. michiganensis population in New York. Phytopathology, 105(2), 169–179.  https://doi.org/10.1094/PHYTO-06-14-0178-R.CrossRefGoogle Scholar
  29. Tegli, S., Sereni, A., & Surico, G. (2002). PCR-based assay for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds. Letters in Applied Microbiology, 35(4), 331–337.CrossRefGoogle Scholar
  30. Theodoro, G. d. F., Maringoni, A. C., Chumpati, A. A., Correia, H. d. C., Theodoro, J. V. C., & Nogueira, R. J. (2010). First report of bacterial wilt of common bean caused by Curtobacterium flaccumfaciens pv. flaccumfaciens in Mato Grosso do Sul. Journal of Plant Pathology, 92, S4.107–S4.122.Google Scholar
  31. Uesugi, C. H., Freitas, M. A., & Menezes, J. R. (2003). First occurrence of Curtobacterium flaccumfaciens pv. flaccumfaciens on bean in the state of Goias and Federal District of Brazil. Fitopatologia Brasileira, 28(3), 324–324.  https://doi.org/10.1590/S0100-41582003000300019.CrossRefGoogle Scholar
  32. Vignesh, R., Prabakar, P., Jaganathan, R., & Swathirajan, C. R. (2016). Isolation and characterization of extracellular proteases from Pseudomonas aeruginosa and Bacillus subtilis strains. Bull. Env. Pharmacol. Life Sci., 5(8), 40–43.Google Scholar
  33. Young, J. M., Dye, D. W., Bradbury, J. F., Panagopoulos, C. G., & Robbs, C. F. (1978). A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research, 21(1), 153–177.  https://doi.org/10.1080/00288233.1978.10427397.CrossRefGoogle Scholar
  34. Young, J. M., Watson, D. R. W., & Dye, D. W. (2004). Reconsideration of Arthrobacter ilicis (Mandel et al. 1961) Collins et al. 1982 as a plant-pathogenic species. Proposal to emend the authority and description of the species. Request for an opinion. International Journal of Systematic and Evolutionary Microbiology, 54(1), 303–305.CrossRefGoogle Scholar
  35. Zerbino, D. R., & Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18(5), 821–829.  https://doi.org/10.1101/gr.074492.107.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • R. M. Gonçalves
    • 1
  • M. I. Balbi-Peña
    • 2
  • J. M. Soman
    • 3
  • A. C. Maringoni
    • 3
  • G. Taghouti
    • 4
  • M. Fischer-Le Saux
    • 4
  • P. Portier
    • 4
    Email author
  1. 1.Instituto Federal de Educação, Ciência e Tecnologia de Minas GeraisSanta LuziaBrazil
  2. 2.Departamento de Agronomia, Universidade Estadual de Londrina (UEL)LondrinaBrazil
  3. 3.Faculdade de Ciências AgronômicasUniversidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)BotucatuBrazil
  4. 4.IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, CIRM-CFBPBeaucouzé cedexFrance

Personalised recommendations