European Journal of Plant Pathology

, Volume 153, Issue 1, pp 15–35 | Cite as

Efficiency of bacterial biosurfactant for biocontrol of Rhizoctonia solani (AG - 4) causing root rot in faba bean (Vicia faba) plants

  • Samia Ageeb AkladiousEmail author
  • Eman Zakaria Gomaa
  • Omima Mohammed El-Mahdy


Biosurfactants are a structurally diverse group of surface-active compounds produced by microorganisms, with numerous applications in different fields. In the present study, we evaluated the antifungal activity of a biosurfactant produced by Bacillus licheniformis against Rhizoctonia solani AG-4 that causes root rot in two cultivars of Vicia faba (Nubaria 1 & Sakha 1). Molasses and yeast extract as carbon and nitrogen sources exhibited maximum emulsification activity and fungal growth inhibition. Treatment with biosurfactant decreased the disease incidence from 62.11 to 20.00% in cv. Nubaria 1 and from 38.93 to 16.51% in case of cv. Sakha 1. Results revealed that growth parameters, photosynthetic pigments and endogenous phytohormones were markedly inhibited in faba bean, particularly in cv. Nubaria 1 plants, due to the root rot disease. Moreover, infection with R. solani caused an increase in lipid peroxidation content, non-enzymatic (phenolic and flavonoids compounds) and enzymatic antioxidants contents (phenylalanine ammonia lyase) as compared with healthy control plants. Biosurfactant application to the healthy and infected plants enhanced all the mentioned parameters except the lipid peroxidation content which showed significant reduction. Electrophoretic patterns of peroxidase, polyphenol oxidase and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments. Peroxidase and polyphenol oxidase showed increased activities in cv. Sakha 1 by BS application. It appears that application of bacterial biosurfactant was able to enhance the biological control of root rot disease of faba bean plants.


Optimization Phytopathogenic fungi Enzymatic and non-enzymatic systems Phytohormones 



The authors wish to thank Prof. Dr. Eman M. Fawzy (Plant Microbiology, Faculty of Education, Ain Shams University) for her scientific and technical support and her helpful suggestions. We also acknowledge Prof. Dr. Mohamed H. Lotfy (Plant Taxonomy, Faculty of Education, Ain Shams University) for his assistance in the anatomical section of the manuscript.

Compliance with ethical standards

This research article is not submitted elsewhere for publication and this manuscript complies with the Ethical Rules applicable for this journal.

Competing interest

The authors declare that they have no competing interest.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abd El-Hai, K. M., Ali, A. A., & El-Metwally, M. A. (2017). Down-regulation of damping-off and root rot diseases in lentil using kinetin and Trichoderma. International Journal of Agricultural Research, 12, 41–51.Google Scholar
  2. Ahed, A. H. M., & Kamil, S. J. (2013). Biological control of bean root rot disease caused by Rhizoctonia solani under green house and field conditions. Agriculture and Biology Journal of North America, 4(5), 512–519.Google Scholar
  3. AL-Hakimi, A. M. A., & Alghalibi, S. M. S. (2007). Thiamin and salicylic acid as biological alternatives for controlling broad bean rot disease. Journal of Applied Sciences and Environmental Management, 11(4), 125–131.Google Scholar
  4. Altschul, S. F., Thomas, L. M., Alejandro, A. S., Zhang, J., Zhang, Z., Miller, W., Lipman, & D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.Google Scholar
  5. Balogun, S. A., & Fagade, O. E. (2010). Emulsifying bacteria in produce water from Niger Delta, Nigeria. African Journal of Microbiology Research, 14(9), 730–734.Google Scholar
  6. Barna, B., Smigocki, C., & Baker, J. C. (2008). Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in Nicotiana spp. Phytopathology, 98, 1242–1247.CrossRefGoogle Scholar
  7. Bassoli, B. K., Cassolla, P., Borba-Murad, G. R., Constantin, J., Salgueiro-Pagadigorria, C. L., Bazotte, R. B., da Silva, R. S. . S. F., & de Souza, H. M. (2008). Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: Effects on hepatic glucose release and glycemia. Cell Biochemistry and Function, 26, 320–328.Google Scholar
  8. Batish, D. R., Singh, H. P., Kaur, S., Kohli, R. K., & Yadav, S. S. (2008). Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). Journal of Plant Physiology, 165, 297–305.CrossRefGoogle Scholar
  9. Beaudoin-Eagan, L. D., & Thorpe, T. A. (1985). Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Journal of Plant Physiology, 78, 438–441.CrossRefGoogle Scholar
  10. Bhosale, H. J., Kadam, T. A., & Phulari, S. (2014). Evaluation of antimicrobial activity and radical scavenging potential of lipopeptide biosurfactant from Klebsiella pneumoniae MSO-32. Journal of Pharmacy Research, 8(2), 139–143.Google Scholar
  11. Bodour, A. A., Drees, K. P., & Maier, R. M. (2003). Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Applied and Environmental Microbiology, 69(6), 3280–3287.CrossRefGoogle Scholar
  12. Brooker, N., Windorski, J., & Blumi, E. (2008). Halogenated coumarins derivatives as novel seed protectants. Communication in Agriculture and Applied Biological Sciences, 73(2), 81–89.Google Scholar
  13. Cao, X. H., Zhen-Yu, L., Chun-Ling, W., Wen-Yan, Y., & Mei-Fang, L. (2009). Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of antiadhesive, antimicrobial and antitumor activities. Brazilian Journal of Microbiology, 40, 373–379.CrossRefGoogle Scholar
  14. Chaplin, M. F., & Kennedy, J. F. (1994). Carbohydrate analysis a practical approach (second ed.pp. 1–36). Oxford: IRL Press.Google Scholar
  15. Chauhan, M. K., Chaudhary, V. S., & Samar, S. K. (2011). Life cycle assessment of sugar industry: A review. Renewable and Sustainable Energy Reviews, 15(7), 3445–3453.CrossRefGoogle Scholar
  16. Ciapina, E. M., Melo, W. C., Santa Anna, L. M., Santos, A. S., Freire, D. M., & Pereira, N. J. (2006). Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Applied Biochemistry and Biotechnology, 131, 880–886.CrossRefGoogle Scholar
  17. Dallagnol, L. J., Rodrigues, F. A., Martins, S. C. V., Cavatte, P. C., & DaMatta, F. M. (2011). Alterations on rice leaf physiology during infection by Bipolaris oryzae. Australasian journal of Plant Pathology, 40, 360–365.CrossRefGoogle Scholar
  18. De Cal, A., Garcia-Lepe, R., & Melgarejo, P. (2000). Induced resistance by Penicillium oxalicum against Fusarium oxysporum f. sp. lycopersici: Histological studies of infected and induced tomato stems. Phytopathology, 90, 260–268.CrossRefGoogle Scholar
  19. De Vleesschauwer, D., Xu, J., & Hofte, M. (2014). Making sense of hormone mediated defense networking: From rice to Arabidopsis. Frontiers in Plant Science, 5, 1–15.CrossRefGoogle Scholar
  20. Deb, M., Mandal, N., Sathiavelu, M., & Arunachalam, S. (2016). Application and future aspects of microbial biosurfactants – Review. Research Journal of Pharmaceutical, Biological and Chemical. Sciences, 7(4), 2803–2812.Google Scholar
  21. Elwakil, M. A., El-Refai, I. M., Awadallah, O. A., & Mohammed, M. S. (2009). Seed-borne pathogens of faba bean in Egypt: Detection and pathogenicity. Plant Pathology Journal, 8, 90–97.CrossRefGoogle Scholar
  22. Fakruddin, M. d. (2012). Biosurfactant: Production and application. Journal of Petroleum & Environmental Biotechnology, 3, 124.Google Scholar
  23. Fathabad, E. G. (2011). Biosurfactant in pharmaceutical industry: A mini-review, American Journal of Drug Discovery and. Development, 1(1), 58–69.Google Scholar
  24. Gandhimathi, R., Arunkumar, M., Selvin, J., Thangavelu, T., Sivaramakrishnan, S., Seghal Kiran, G., et al. (2008). Antimicrobial potential of sponge associated marine actinomycetes. Journal of Medical Mycology, 18, 16–22.CrossRefGoogle Scholar
  25. Gholamnezhad, J., Sanjarian, F., Goltapeh, E. M., Safaie, N., & Razavi, K. (2016). Effect of salicylic acid on enzyme activity in wheat in immediate early time after infection with Mycosphaerella graminicola. Scientia Agriculturae Bohemica, 47(1), 1–8.CrossRefGoogle Scholar
  26. Gomaa, E. Z. (2013). Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Brazilian Archives of Biology and Technology, 56(2), 259–268.CrossRefGoogle Scholar
  27. Goupy, P., Hugues, M., Biovin, P., & Amiot, M. J. (1999). Antioxidant com- position and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. Journal of the Science of Food and Agriculture, 79(12), 1625–1634.CrossRefGoogle Scholar
  28. Gudina, E. J., Rodrigues, A. I., Alves, E., Domingues, M. R., Teixeira, J. A., & Rodrigues, L. R. (2015). Bioconversion of agro-industrial by-products in rhamno lipids toward applications in enhanced oil recovery and bioremediation. Bioresource Technology, 177, 87–93.CrossRefGoogle Scholar
  29. Habashy, S. R., Abd El-Mageed, M. H., Fawzy, R. N., Eid, K. E., & El-Sheme, H. S. A. (2016). Efficiency of some fungicides, plant extracts, chemical inducers and plant hormones on the management of damping-off and root rot diseases of Khaya senegalensis under greenhouse conditions. International Journal of Scientific & Engineering Research, 7, 930–944.Google Scholar
  30. He, H. Q., & Lin, W. X. (2001). Studies on allelopathic physiobiochemical characteristics of rice. Chinese Journal of Eco-Agriculture, 9, 56–57.Google Scholar
  31. Heath, R. L., & Packer, L. (1986). Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.CrossRefGoogle Scholar
  32. Hertog, M. G. L., Hollman, P. C. H., & Katan, M. B. (1992). Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. Journal of Agricultural and Food Chemistry, 40, 2379–2383.CrossRefGoogle Scholar
  33. Horn, J. N., Sengillo, J. D., Lin, D., et al. (2012). Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics. Biochimica et Biophysica Acta, 18, 212–218.CrossRefGoogle Scholar
  34. Jakupovic, M., Heintz, M., Reichmann, P., Mendgen, K., & Hahn, M. (2006). Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genetics and Biology, 43, 8_19.Google Scholar
  35. Jiang, C. J., Shimono, M., Sugano, S., Kojima, M., Liu, X., Inoue, H., Sakakibara, H., & Takatsuji, H. (2013). Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Molecular Plant-Microbe Interactions Journal, 26, 287–296.CrossRefGoogle Scholar
  36. Joshi, S. J., Al-Wahaibi, Y. M., Al-Bahry, S. N., Elshafie, A. E., Al-Bemani, A. S., Al-Bahri, A., & Al-Mandhari, M. S. (2016). Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Frontiers in Microbiology, 7, 1853.Google Scholar
  37. Kamhawy, M. A. M. (2001). Studies on die-back disease of grapevine in A.R.E. Ph.D. Thesis, Fac. Agric., Zagazig Univ., Egypt, (pp. 258).Google Scholar
  38. Kang, S. M., Radhakrishnan, R., & Lee, I. J. (2015). Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World Journal of Microbiology and Biotechnology, 31, 1517–1527.CrossRefGoogle Scholar
  39. Larsen, A. L., & Benson, W. C. (1970). Variety specific variants of oxidative enzymes from soybean seeds. Crop Science, 10, 493–495.CrossRefGoogle Scholar
  40. Lattanzio, V., Lattanzio, V. M. T., & Cardinali, A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research, 23–67.Google Scholar
  41. Lebeda A., jancova D., & Luhova L. (1999). Enzymes in fungal plant pathogenesis. Phyton (Horn, Austria) 39 (3), 51–56.Google Scholar
  42. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic Biomemranes. Methods in Enzymology, 148, 350_82.Google Scholar
  43. Lowry, O. H., Rosebrought, N. J., Farr, A., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 139, 265–274.Google Scholar
  44. Makoi, J. H. J. R., & Ndakidemi, P. A. (2007). Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. African Journal of Biotechnology, 6, 1358–1368.Google Scholar
  45. Manayi, A., Saeidnia, S., Faramarzi, M. A., Samadi, N., Jafari, S., Vazirian, M., Ghaderi, A., Mirnezami, T., Hadjiakhoondi, A., Ardekani, M. R. S., & Khanavi, M. (2013). A comparative study of anti-Candida activity and phenolic contents of the calluses from Lythrum salicaria L. in different treatments. Applied Biochemistry and Biotechnology, 170, 176–184.CrossRefGoogle Scholar
  46. Marmath, K. K., Giri, P., Taj, G., Pandey, D., & Kumar, A. (2013). Effect of zeatin on the infection process and expression of MAPK-4 during pathogenesis of Alternaria brassicae in non-host and host Brassica plants. African Journal of Biotechnology, 12, 2164–2174.CrossRefGoogle Scholar
  47. Mattila, P., Astola, J., & Kumpulainen, J. (2000). Determination of flavonoids in plant material by HPLC with diode-Array and electro-Array detections. Journal of Agricultural and Food Chemistry, 48, 5834–5841.CrossRefGoogle Scholar
  48. Muller, P., & Hilgenberg, W. (1986). Isomers of zeatin and zeatin riboside in club root tissue: Evidence for trans-zeatin bio-synthesis by Plasmadiophora brassicae. Plant Physiology, 66, 245–250.CrossRefGoogle Scholar
  49. Noronha, M. A., Michereff, S. J., & Mariano, R. L. R. (1995). Efeito do tratamento de sementes de caupi com Bacillus subtilis no controle de Rhizoctonia solani. Fitopatologia Brasileira, 20, 174–178.Google Scholar
  50. Osada, N., & Hiura, T. (2017). How is light interception efficiency related to shoot structure in tall canopy species? Oecologia, 185, 29–41.CrossRefGoogle Scholar
  51. Pruthi, V., & Cameotra, S. (1995). Rapid method for monitoring maximum biosurfactant production obtained by acetone precipitation. Biotechnology Techniques, 9(4), 271–276.CrossRefGoogle Scholar
  52. Rochelle, P. A., Will, J. A. K., Fry, J. C., Jenkins, G. J. S., Parkes, R. J., Turley, C. M., & Weightman, A. J. (1995). In J. T. Trevors & J. D. van Elsas (Eds.), Nucleic acids in the environment. Berlin: Springer.Google Scholar
  53. Rodrigues, L. R., Teixeira, J. A., Van der Mei, H. C., & Oliveira, R. (2006). Physiochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids and Surfaces B: Biointerfaces, 49(1), 79–86.CrossRefGoogle Scholar
  54. Ruzin, S. E. (1999). Plant microtechnques and microscopy (First ed.). USA: Oxfod University press.Google Scholar
  55. Sachdev, D. P., & Cameotra, S. S. (2013). Biosurfactants in agriculture. Applied Microbiology and Biotechnology, 97, 1005–1016.CrossRefGoogle Scholar
  56. Sadasivam, S., & Manickam, A. (1991). Biochemical Methods, second ed. new age international limited. New Delhi: Publishers.Google Scholar
  57. Saleem, M., Nazir, M., Ali, M. S., Hussain, H., Lee, Y. S., Riaz, N., & Jabbar, A. (2010). Antimicrobial natural products: An update on future antibiotic drug candidates. Natural Product Reports, 27, 238–254.CrossRefGoogle Scholar
  58. Samadhan, W., Chandrashekhar, K., Sneha, S., Priyanka, S., & Chaitanya, V. (2014). Low cost production of biosurfactant from different substrates and their comparative study with commercially available chemical surfactant. International Journal of Science and Technology Research, 3(3), 146–149.Google Scholar
  59. Sato, M., & Hasegawa, M. (1976). The latency of spinach chloroplast phenolase. Phytochemistry, 15, 61–65.CrossRefGoogle Scholar
  60. Schovánková, J., & Opatová, H. (2011). Changes in phenols composition and activity of phenylalanine-ammonia lyase in apples after fungal infections. Horticultural Science (Prague), 38, 1–10.CrossRefGoogle Scholar
  61. Shindy, W. W., & Smith, O. (1975). Identification of plant hormones from cotton ovules. Plant Physiology, 55, 550–554.CrossRefGoogle Scholar
  62. Siciliano, M. J., & Shaw, C. R. (1976). Separation and visualization of enzymes on gels. In I. Smith [Ed.], Chromatographic and electrophoretic techniques (pp. 185-209). Heinemann Medical Books, London, U.K.Google Scholar
  63. Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods. 7th edition. Ames: Iowa State University Press.Google Scholar
  64. Sneh, B. S., Jabaji-Hare, S., & Dijst, G. (1996). Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (p. 578). London: Kluwer Academic Publishers.Google Scholar
  65. Spanu, P. D., Abbott, J. C., Amselem, J., Burgis, T. A., Soanes, D. M., Stüber, K., & van Themaat, E. (2010). Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science, 15(10), 1543–1546.CrossRefGoogle Scholar
  66. Suresh, C. R., Lohitnath, T., & Mukesh, D. J. (2012). Production and characterization of biosurfurctant from Bacillus subtilis MTCC 441. Advances in Applied Science Research, 3(3), 1827–1831.Google Scholar
  67. Vanitha, S. C., Niranjana, S. R., & Umesha, S. (2009). Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. Journal of Phytopathology, 157, 552–557.CrossRefGoogle Scholar
  68. Velho, R. V., Medina, L. F., Segalin, J., & Brandelli, A. (2011). Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiologia (Praha), 56, 297–303.CrossRefGoogle Scholar
  69. Vernon, L. P., & Seely, G. R. (1966). The chlorophylls. New York: Academic Press.Google Scholar
  70. Wendel, J. F., & Weeden, N. F. (1989). Visualization and interpretation of plant isozymes. In D. E. Soltis & P. S. Soltis (Eds.), Isozymes in plant biology (pp. 18). London, UK: Chapman & Hall.Google Scholar
  71. Yamaji, K., & Ichihara, Y. (2012). The role of catechin and epicatechin in chemical defense against damping-off fungi of current-year Fagus crenata seedlings in natural forest. Forest Pathology, 42, 1–7.CrossRefGoogle Scholar
  72. Yang, W., Xu, X., Li, Y., Wang, Y., Li, M., Wang, Y., et al. (2016). Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS One, 11(1), 1–15.Google Scholar
  73. Ye, S. F., Zhou, Y. H., Sun, Y., Zou, L. Y., & Yu, J. Q. (2006). Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56, 255–262.CrossRefGoogle Scholar
  74. Youssef, A. S. M., & Abd El-Aal, M. M. M. (2014). Effect of kinetin and mineral fertilization on growth, flowering, bulbs productivity, chemical compositions and histological features of Hippeastrum vittatum plant. Journal of Plant Production, Mansoura Univ., 5(3), 357–381.Google Scholar
  75. Zhang, F., Gu, W., Xu, P., Tang, S., Xie, K., Huang, X., & Huang, Q. (2011). Effects of alkyl polyglycoside (APG) on composting of agricultural wastes. Waste Management, 31, 1333–1338.CrossRefGoogle Scholar
  76. Zhang, C., Wang, X., Zhang, F., Dong, L., Wu, J., Cheng, et al. (2017). Phenylalanine ammonia-lyase 2.1 contributes to the soybean response towards Phytophthora sojae infection. Scientific Reports, 7, 7242.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Samia Ageeb Akladious
    • 1
    Email author
  • Eman Zakaria Gomaa
    • 1
  • Omima Mohammed El-Mahdy
    • 1
  1. 1.Department of Biological and Geological Sciences, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations