Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 4, pp 1149–1163 | Cite as

Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection

  • Ning Liu
  • Zhiyan Cao
  • Keke Cao
  • Shuangxin Ma
  • Xiaodong Gong
  • Hui Jia
  • Dongqing Dai
  • Jingao DongEmail author
Article
  • 117 Downloads

Abstract

Setosphaeria turcica (syn. Exserohilum turcicum) is the pathogenic fungus of maize (Zea mays) causing northern leaf blight, which is a major maize disease worldwide. Laccase-like multicopper oxidases (LMCOs) are generally found in different fungi and play important physiological roles during growth and pathogenesis of the fungus. Nine LMCOs were found in the S. turcica genome using a Hidden Markov Model for three Pfam copper oxidase families. They shared a low homology of 19.79%–48.70% and were classified into five LMCO super families, but had conserved amino acid residues in the Cu-binding sites. Transcription levels of LMCOs were detected by quantitative real-time PCR during different stages of invasion, i.e. in non-germinated conidia, during formation of germ tubes, appressoria and penetration pegs as well as during hyphal growth after penetration. StLAC6 and StLAC8 were highly expressed in mycelium and expression of StLAC2 was significant in non-germinated conidia. During infection, the expression of StLAC1 and StLAC8 was high during appressorium formation and the expression of StLAC6 was high during penetration peg formation. The laccase activity and gene expression of LMCOs cultivated with the laccase inducers CuSO4, ABTS and resveratrol was detected. When treated with Cu2+, the laccase activity significantly increased. Furthermore, the expression of all genes was significantly increased, except that of StLAC7. In the presence of the phenolic phytoalexin resveratrol, laccase activity did not increase, but the expression levels of StLAC2, StLAC4 and StLAC5 were up-regulated. These results suggest that LMCOs in S. turcica play different roles during fungal growth and infection processes.

Keywords

Setosphaeria turcica Exserohilum turcicum Laccase-like multicopper oxidase Infection Development Expression pattern 

Notes

Acknowledgements

This work was funded by the China Agriculture Research System (CARS-02-25), National Natural Science Foundation of China (31601598), Science and technology research project of Hebei (QN2014091) and Science and technology research project of Hebei (ZD2014053).

Compliance with ethical standards

This work does not contain any study with animals and/or humans.

Supplementary material

10658_2018_1632_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17.1 kb)
10658_2018_1632_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 15.7 kb)

References

  1. Andberg, M., Hakulinen, N., Auer, S., Saloheimo, M., Koivula, A., Rouvinen, J., & Kruus, K. (2009). Essential role of the c-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. The FEBS Journal, 276(21), 6285–6300.CrossRefGoogle Scholar
  2. Balcázar-López, E., Méndez-Lorenzo, L. H., Batista-García, R. A., Esquivel-Naranjo, U., Ayala, M., Kumar, V. V., Savary, O., Cabana, H., Herrera-Estrella, A., & Folch-Mallol, J. L. (2016). Xenobiotic compounds degradation by heterologous expression of a Trametessanguineus laccase in Trichoderma atroviride. PLoS One, 11(2), e0147997.CrossRefGoogle Scholar
  3. Baltierra-Trejo, E., Márquez-Benavides, L., & Sánchez-Yáñez, J. M. (2015). Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. Journal of Microbiological Methods, 119, 126–131.CrossRefGoogle Scholar
  4. Bugg, T. D., Ahmad, M., Hardiman, E. M., & Rahmanpour, R. (2011). Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 28(12), 1883–1896.CrossRefGoogle Scholar
  5. Cao, Z. Y., Jia, H., Zhu, X. M., & Dong, J. G. (2011). Relationship between DHN melanin and formation of appressorium turgor pressure of Setosphaeria turcica. Scientia Agricultura Sinica, 44(5), 925–932.Google Scholar
  6. Castanera, R., Pérez, G., Omarini, A., Alfaro, M., Pisabarro, A. G., Faraco, V., Amore, A., & Ramírez, L. (2012). Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Applied and Environmental Microbiology, 78(11), 4037–4045.CrossRefGoogle Scholar
  7. Cázares-García, S. V., Vázquez-Garcidueñas, S., & Vázquez-Marrufo, G. (2013). Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLoS One, 8(1), e55295.CrossRefGoogle Scholar
  8. Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J. M., Simon, A., & Viaud, M. (2007). Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 277(1), 1–10.CrossRefGoogle Scholar
  9. Courty, P. E., Hoegger, P. J., Kilaru, S., Kohler, A., Buée, M., Garbaye, J., Martin, F., & Kües, U. (2009). Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytologist, 182(3), 736–750.CrossRefGoogle Scholar
  10. Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1), 36–50.Google Scholar
  11. Durand, F., Gounel, S., & Mano, N. (2013). Purification and characterization of a new laccase from the filamentous fungus Podospora anserina. Protein Expression and Purification, 88(1), 61–66.CrossRefGoogle Scholar
  12. Fernandez, J., & Wilson, R. A. (2014). Cells in cells: Morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae. Protoplasma, 251(1), 37–47.CrossRefGoogle Scholar
  13. Fu, Y. H., & Marzluf, G. A. (1990). Nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific dna-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 87(14), 5331–5335.CrossRefGoogle Scholar
  14. Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67(3), 369–385.CrossRefGoogle Scholar
  15. Gu, S. Q., Li, P., Wu, M., Hao, Z. M., Gong, X. D., Zhang, X. Y., Tian, L., Zhang, P., Wang, Y., Cao, Z. Y., Fan, Y. S., Han, J. M., & Dong, J. G. (2014). StSTE12 is required for the pathogenicity of Setosphaeria turcica by regulating appressorium development and penetration. Microbiological Research, 169(11), 817–823.CrossRefGoogle Scholar
  16. Hashikawa, N., Yamamoto, N., & Sakurai, H. (2007). Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. Journal of Biological Chemistry, 282(14), 10333–10340.CrossRefGoogle Scholar
  17. Hoegger, P. J., Kilaru, S., James, T. Y., Thacker, J. R., & Kües, U. (2006). Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. The FEBS Journal, 273(10), 2308–2326.CrossRefGoogle Scholar
  18. Kallio, J. P., Gasparetti, C., Andberg, M., Boer, H., Koivula, A., Kruus, K., Rouvinen, J., & Hakulinen, N. (2011). Crystal structure of an ascomycete fungal laccase from Thielavia arenaria--common structural features of asco-laccases. The FEBS Journal, 278(13), 2283–2295.CrossRefGoogle Scholar
  19. Khambhaty, Y., Ananth, S., Sreeram, K. J., Rao, J. R., & Nair, B. U. (2015). Dual utility of a novel, copper enhanced laccase from Trichoderma aureoviridae. International Journal of Biological Macromolecules, 81, 69–75.CrossRefGoogle Scholar
  20. Kilaru, S., Hoegger, P. J., & Kües, U. (2006). The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Current Genetics, 50(1), 45–60.CrossRefGoogle Scholar
  21. Kim, J. H., Yang, Y. K., & Chambliss, G. H. (2005). Evidence that Bacillus catabolitecontrol protein CcpA interacts with RNA polymerase to inhibit transcription. Molecular Microbiology, 56(1), 155–162.CrossRefGoogle Scholar
  22. Kües, U., & Rühl, M. (2011). Multiple multi-copper oxidase gene families in basidiomycetes - what for? Current Genomics, 12(2), 72–94.CrossRefGoogle Scholar
  23. Kumar, S. V., Phale, P. S., Durani, S., & Wangikar, P. P. (2003). Combined sequence and structure analysis of the fungal laccase family. Biotechnology and Bioengineering, 83(4), 386–394.CrossRefGoogle Scholar
  24. Kuo, H. C., Détry, N., Choi, J., & Lee, Y. H. (2015). Potential roles of laccases on virulence of Heterobasidion annosum s.s. Microbial Pathogenesis, 81, 16–21.CrossRefGoogle Scholar
  25. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.CrossRefGoogle Scholar
  26. Lin, S. Y., Okuda, S., Ikeda, K., Okuno, T., & Takano, Y. (2012). LAC2 encoding a secreted laccase is involved in appressorial melanization and conidial pigmentation in Colletotrichum orbiculare. Molecular Plant-Microbe Interactions, 25(12), 1552–1561.CrossRefGoogle Scholar
  27. Litvintseva, A. P., & Henson, J. M. (2002). Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Applied and Environmental Microbiology, 68(3), 1305–1311.CrossRefGoogle Scholar
  28. Ma, S., Cao, K., Liu, N., Meng, C., Cao, Z., Dai, D., Jia, H., Zang, J., Li, Z., Hao, Z., Gu, S., & Dong, J. (2017). The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica. Fungal Biology, 121(6–7), 589–601.CrossRefGoogle Scholar
  29. Maestre-Reyna, M., Liu, W. C., Jeng, W. Y., Lee, C. C., Hsu, C. A., Wen, T. N., Wang, A. H., & Shyur, L. F. (2015). Structural and functional roles of glycosylation in fungal laccase from Lentinus sp. PLoS One, 10(4), e0120601.CrossRefGoogle Scholar
  30. Mathews, S. L., Smithson, C. E., & Grunden, A. M. (2016). Purification and characterization of a recombinant laccase-like multi-copper oxidase from Paenibacillus glucanolyticus SLM1. Journal of Applied Microbiology, 121(5), 1335–1345.CrossRefGoogle Scholar
  31. Messerschmidt, A., & Huber, R. (1990). The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. European Journal of Biochemistry, 187(2), 341–352.CrossRefGoogle Scholar
  32. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A., & Punta, M. (2013). Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 41(12), e121.CrossRefGoogle Scholar
  33. Munk, L., Sitarz, A. K., Kalyani, D. C., Mikkelsen, J. D., & Meyer, A. S. (2015). Can laccases catalyze bond cleavage in lignin? Biotechnology Advances, 33(1), 13–24.CrossRefGoogle Scholar
  34. Nakade, K., Watanabe, H., Sakamoto, Y., & Sato, T. (2011). Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence. Microbiological Research, 166(6), 484–493.CrossRefGoogle Scholar
  35. Park, M., Kim, M., Kim, S., Ha, B., & Ro, H. S. (2015). Differential expression of laccase genes in Pleurotus ostreatus and biochemical characterization of laccase isozymes produced in Pichia pastoris. Mycobiology, 43(3), 280–287.CrossRefGoogle Scholar
  36. Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., & Faraco, V. (2011). Induction and transcriptional regulation of laccases in fungi. Current Genomics, 12(2), 104–112.CrossRefGoogle Scholar
  37. Reiss, R., Ihssen, J., Richter, M., Eichhorn, E., Schilling, B., & Thöny-Meyer, L. (2013). Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One, 8(6), e65633.CrossRefGoogle Scholar
  38. Ruhl, M., Majcherczyk, A., & Kues, U. (2013). Lcc1 and Lcc5 are the main laccases secreted in liquid cultures of Coprinopsis cinerea strains. Antonie Van Leeuwenhoek, 103(5), 1029–1039.CrossRefGoogle Scholar
  39. Sakamoto, Y., Nakade, K., Yoshida, K., Natsume, S., Miyazaki, K., Sato, S., van Peer, A. F., & Konno, N. (2015). Grouping of multicopper oxidases in Lentinula edodes by sequence similarities and expression patterns. AMB Express, 5(1), 63.CrossRefGoogle Scholar
  40. Sapmak, A., Boyce, K. J., Andrianopoulos, A., & Vanittanakom, N. (2015). The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei. PLoS One, 10(4), e0122728.CrossRefGoogle Scholar
  41. Schouten, A., Wagemakers, L., Stefanato, F. L., Kaaij, R. M. V. D., & Kan, J. A. L. V. (2002). Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Molecular Microbiology, 43(4), 883–894.CrossRefGoogle Scholar
  42. Shen, S., Hao, Z., Gu, S., Wang, J., Cao, Z., Li, Z., Wang, Q., Li, P., Hao, J., & Dong, J. (2013). The catalytic subunit of cAMP-dependent protein kinase a StPKA-c contributes to conidiation and early invasion in the phytopathogenic fungus Setosphaeria turcica. FEMS Microbiology Letters, 343(2), 135–144.CrossRefGoogle Scholar
  43. Simon, M., Adam, G., Rapatz, W., Spevak, W., & Ruis, H. (1991). The Saccharomyces cerevisiaeADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Molecular and Cellular Biology, 11(2), 699–704.CrossRefGoogle Scholar
  44. Sirim, D., Wagner, F., Wang, L., Schmid, R. D., & Pleiss, J. (2011). The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database: The Journal of Biological Databases and Curation, 2011, bar006.CrossRefGoogle Scholar
  45. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.CrossRefGoogle Scholar
  46. Tang, Q. Y., & Zhang, C. X. (2013). Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci., 20(2), 254–260.CrossRefGoogle Scholar
  47. Upadhyay, S., Torres, G., & Lin, X. (2013). Laccases involved in 1,8-dihydroxynaphthalene melanin biosynthesis in Aspergillus fumigatus are regulated by developmental factors and copper homeostasis. Eukaryotic Cell, 12(12), 1641–1652.CrossRefGoogle Scholar
  48. Xie, N., Chapeland-Leclerc, F., Silar, P., & Ruprich-Robert, G. (2014). Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungus Podospora anserina. Environmental Microbiology, 16(1), 141–161.CrossRefGoogle Scholar
  49. Xie, N., Ruprich-Robert, G., Silar, P., Herbert, E., Ferrari, R., & Chapeland-Leclerc, F. (2018). Characterization of three multicopper oxidases in the filamentous fungus Podospora anserina: a new role of an ABR1-like protein in fungal development? Fungal Genetics and Biology, 116(4), 1–13.CrossRefGoogle Scholar
  50. Xu, F., Berka, R. M., Wahleithner, J. A., Nelson, B. A., Shuster, J. R., Brown, S. H., Palmer, A. E., & Solomon, E. I. (1998). Site-directed mutations in fungal laccase: Effect on redox potential, activity and ph profile. Biochemical Journal, 334(Pt 1), 63–72.CrossRefGoogle Scholar
  51. Zhan, X., Cao, Z. Y., Xing, J. H., & Dong, J. G. (2011). Screening of laccase-producing isolates among plant pathogenic fungi. Scientia Agricultura Sinica, 44(4), 723–729.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Ning Liu
    • 1
    • 2
  • Zhiyan Cao
    • 1
    • 2
  • Keke Cao
    • 1
    • 2
  • Shuangxin Ma
    • 1
    • 2
  • Xiaodong Gong
    • 1
    • 2
  • Hui Jia
    • 1
    • 2
  • Dongqing Dai
    • 1
    • 2
  • Jingao Dong
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebei Agricultural UniversityBaodingChina
  2. 2.Mycotoxin and Molecular Plant Pathology LaboratoryAgricultural University of HebeiBaodingChina

Personalised recommendations