European Journal of Plant Pathology

, Volume 153, Issue 1, pp 317–323 | Cite as

A Watermelon mosaic virus clone tagged with the yellow visual maker phytoene synthase facilitates scoring infectivity in melon breeding programs

  • Verónica Aragonés
  • Ana Pérez-de-Castro
  • Teresa Cordero
  • Jaime Cebolla-Cornejo
  • Carmelo López
  • Belén Picó
  • José-Antonio DaròsEmail author


Watermelon mosaic virus (WMV), a plus-strand RNA virus that belongs to the family Potyviridae, is one of the most damaging viruses that infect cucurbit crops. However, isolates of this species frequently induce mild symptoms, which makes difficult to manage the disease in the field and breeding programs. A new generation of marker genes has been recently developed to visually track plant virus infection. Virus-mediated expression of the Pantoea ananatis phytoene synthase (crtB) induces accumulation in infected tissues of pigmented carotenoids that can be readily detected by the naked eye. Here we investigated whether this visual marker may facilitate visual diagnosis of WMV infection in cucurbits. First, we cloned a mild WMV isolate (WMV-Vera) and built a recombinant clone that expresses crtB (WMV-crtB). Next, we inoculated a series of cucurbit cultivars frequently used in breeding programs. We observed that WMV-mediated expression of crtB helps to visually score infection in two susceptible and highly appreciated melon cultivars, such as Piñonet Piel de Sapo and Vedrantais, but not in susceptible Cucurbita spp. cultivars. An increase in yellow pigmentation was experimentally confirmed in susceptible melon cultivars by measuring the Hue angle using a solid colorimeter. Carotenoid analyses in infected tissues explained why the visual crtB marker performs better in susceptible melon than in Cucurbita spp. cultivars. These results support that the visual marker crtB may facilitate visual diagnosis of WMV infection in melon breeding programs.


Watermelon mosaic virus Phytoene synthase Melon Cucurbita Virus diagnosis 



This research was supported by grants BIO2014–54269-R, AGL2014–53398-C2–2-R, BIO2017–83184-R, and AGL2017–85563-C2–1-R from the Spanish Ministerio de Ciencia, Innovación y Universidades (co-financed FEDER funds).

Compliance with ethical standards

The authors confirm that this work complies the Ethical Rules applicable for this journal.

Ethical approval

This work does not contain any study with humans or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2018_1621_MOESM1_ESM.doc (1.8 mb)
ESM 1 (DOC 1.75 mb)


  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.CrossRefGoogle Scholar
  2. Azevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2007). Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. Journal of Agricultural and Food Chemistry, 55(10), 4027–4033.CrossRefGoogle Scholar
  3. Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J. A. (2012). Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. Plant Physiology, 158(3), 1130–1138.CrossRefGoogle Scholar
  4. Brown, R. N., Bolanos-Herrera, A., Myers, J. R., & Jahn, M. M. (2003). Inheritance of resistance to four cucurbit viruses in Cucurbita moschata. Euphytica, 129(3), 253–258.CrossRefGoogle Scholar
  5. Cordero, T., Cerdán, L., Carbonell, A., Katsarou, K., Kalantidis, K., & Daròs, J. A. (2017a). Dicer-Like 4 is involved in restricting the systemic movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 30(1), 63–71.CrossRefGoogle Scholar
  6. Cordero, T., Mohamed, M. A., López-Moya, J. J., & Daròs, J. A. (2017b). A recombinant Potato virus Y infectious clone tagged with the Rosea1 visual marker (PVY-Ros1) facilitates the analysis of viral infectivity and allows the production of large amounts of anthocyanins in plants. Frontiers in Microbiology, 8, 611.CrossRefGoogle Scholar
  7. Cuevas, H. E., Staub, J. E., Simon, P. W., & Zalapa, J. E. (2009). A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). TAG. Theoretical and Applied Genetics, 119(4), 741–756.CrossRefGoogle Scholar
  8. Desbiez, C., & Lecoq, H. (2004). The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5′ part of the genome. Archives of Virology, 149(8), 1619–1632.CrossRefGoogle Scholar
  9. Desbiez, C., & Lecoq, H. (2008). Evidence for multiple intraspecific recombinants in natural populations of Watermelon mosaic virus (WMV, Potyvirus). Archives of Virology, 153(9), 1749–1754.CrossRefGoogle Scholar
  10. Formisano, G., Roig, C., Esteras, C., Ercolano, M. R., Nuez, F., Monforte, A. J., & Picó, M. B. (2012). Genetic diversity of Spanish Cucurbita pepo landraces: An unexploited resource for summer squash breeding. Genetic Resources and Crop Evolution, 59(6), 1169–1184.CrossRefGoogle Scholar
  11. Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison 3rd, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343–345.CrossRefGoogle Scholar
  12. Gilbert, R. Z., Kyle, M. M., Munger, H. M., & Gray, S. M. (1994). Inheritance of resistance to watermelon mosaic virus in Cucumis melo L. Hortscience, 29(2), 107–110.Google Scholar
  13. Gur, A., Gonda, I., Portnoy, V., Tzuri, G., Chayut, N., Cohen, S., et al. (2016). Genomic aspects of melon fruit quality. In R. Grumet, N. Katzir and J. García-Mas (Eds.), Genetics and genomics of the Cucurbitaceae (pp. 377–408), Springer International Publishing AG 2016.Google Scholar
  14. Juarez, M., Legua, P., Mengual, C. M., Kassem, M. A., Sempere, R. N., Gómez, P., Truniger, V., & Aranda, M. A. (2013). Relative incidence, spatial distribution and genetic diversity of cucurbit viruses in eastern Spain. Annals of Applied Biology, 162(3), 362–370.CrossRefGoogle Scholar
  15. López-González, S., Aragonés, V., Daròs, J. A., Sánchez, F., & Ponz, F. (2017). An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain. European Journal of Plant Pathology, 148(1), 207–211.CrossRefGoogle Scholar
  16. Majer, E., Daròs, J. A., & Zwart, M. P. (2013). Stability and fitness impact of the visually discernible Rosea1 marker in the tobacco etch virus genome. Viruses, 5(9), 2153–2168.CrossRefGoogle Scholar
  17. Majer, E., Llorente, B., Rodríguez-Concepción, M., & Daròs, J. A. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports, 7, 41645.CrossRefGoogle Scholar
  18. Olives Barba, A. I., Cámara Hurtado, M., Sánchez Mata, M. C., Fernández Ruiz, V., & López Sáenz de Tejada, M. (2006). Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95(2), 328–336.Google Scholar
  19. Ouibrahim, L., Mazier, M., Estevan, J., Pagny, G., Decroocq, V., Desbiez, C., Moretti, A., Gallois, J. L., & Caranta, C. (2014). Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. The Plant Journal, 79(5), 705–716.CrossRefGoogle Scholar
  20. Paris, H. S. (2016). Genetic resources of pumpkins and squash, Cucurbita spp.. In R. Grumet, N. Katzir y J. García-Mas (eds.), Genetics and genomics of the Cucurbitaceae (pp. 111–154), Springer International Publishing AG 2016.Google Scholar
  21. Passeri, V., Koes, R., & Quattrocchio, F. M. (2016). New challenges for the design of high value plant products: Stabilization of anthocyanins in plant vacuoles. Frontiers in Plant Science, 7, 153.CrossRefGoogle Scholar
  22. Pitrat, M. (2016). Melon genetic resources: Phenotypic diversity and horticultural taxonomy. In R. Grumet, N. Katzir y J. García-Mas (eds.), Genetics and genomics of the Cucurbitaceae (pp. 25–60), Springer International Publishing AG 2016.Google Scholar
  23. Qin, X., Coku, A., Inoue, K., & Tian, L. (2011). Expression, subcellular localization, and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.). Planta, 234(4), 737–748.CrossRefGoogle Scholar
  24. Revers, F., & García, J. A. (2015). Molecular biology of potyviruses. Advances in Virus Research, 92, 101–199.CrossRefGoogle Scholar
  25. Rodamilans, B., Valli, A., Mingot, A., San León, D., Baulcombe, D., López-Moya, J. J., & García, J. A. (2015). RNA polymerase slippage as a mechanism for the production of frameshift gene products in plant viruses of the Potyviridae family. Journal of Virology, 89(13), 6965–6967.CrossRefGoogle Scholar
  26. Schaefer, B. C. (1995). Revolutions in rapid amplification of cDNA ends: New strategies for polymerase chain-reaction cloning of full-length cDNA ends. Analytical Biochemistry, 227(2), 255–273.CrossRefGoogle Scholar
  27. Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiology, 145(4), 1211–1219.CrossRefGoogle Scholar
  28. Zhang, Y., Butelli, E., & Martin, C. (2014). Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 19, 81–90.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Verónica Aragonés
    • 1
  • Ana Pérez-de-Castro
    • 2
  • Teresa Cordero
    • 1
  • Jaime Cebolla-Cornejo
    • 2
  • Carmelo López
    • 2
  • Belén Picó
    • 2
  • José-Antonio Daròs
    • 1
    Email author
  1. 1.Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València)ValenciaSpain
  2. 2.Instituto de Conservación y Mejora de la Agrodiversidad ValencianaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations